(a)
Interpretation:
The value of change in Gibbs free energy of the reaction needs to be determined at given condition.
[HF] = [H+] = [F-] = 1.0 M
Concept Introduction :
For a reaction, the value of change in Gibbs free energy can be calculated as follows:
Here, R is Universal gas constant, T is temperature and Q is reaction quotient.
(a)

Answer to Problem 109AE
Equilibrium shifts towards left because of +ve value of
Explanation of Solution
The change in Gibbs free energy can be calculated as follows:
For,
Ka =
Here,
For the below condition:
Equilibrium shifts towards left because of +ve value of
(b)
Interpretation:
The value of change in Gibbs free energy of the reaction needs to be determined at given condition.
[HF] = 0.98 M, [H+] = [F-] =
Concept Introduction :
For a reaction, the value of change in Gibbs free energy can be calculated as follows:
Here, R is Universal gas constant, T is temperature and Q is reaction quotient.
(b)

Answer to Problem 109AE
There is no effect of equilibrium because of zero
Explanation of Solution
[HF] = 0.98 M, [H+] = [F-] =
There is no effect of equilibrium because of zero
(c)
Interpretation:
The value of change in Gibbs free energy of the reaction needs to be determined at given condition.
Concept Introduction :
For a reaction, the value of change in Gibbs free energy can be calculated as follows:
Here, R is Universal gas constant, T is temperature and Q is reaction quotient.
(c)

Answer to Problem 109AE
The equilibrium will shift towards right side because of -ve
Explanation of Solution
The equilibrium will shift towards right side because of −ve
(d)
Interpretation:
The value of change in Gibbs free energy of the reaction needs to be determined at given condition.
[HF] = [F-] = 0.27 m, [H+] =
Concept Introduction :
For a reaction, the value of change in Gibbs free energy can be calculated as follows:
Here, R is Universal gas constant, T is temperature and Q is reaction quotient.
(d)

Answer to Problem 109AE
There is no effect of equilibrium because of zero
Explanation of Solution
[HF] = [F-] = 0.27 m, [H+] =
Or,
Putting the values,
There is no effect of equilibrium because of zero
(e)
Interpretation:
The value of change in Gibbs free energy of the reaction needs to be determined at given condition.
[HF] = 0.52 m, [F-] = 0.67 m
Concept Introduction :
For a reaction, the value of change in Gibbs free energy can be calculated as follows:
Here, R is Universal gas constant, T is temperature and Q is reaction quotient.
(e)

Answer to Problem 109AE
The equilibrium will shift towards left because of positive
Explanation of Solution
Change in Gibbs free energy is calculated as follows:
Here,
[HF] = 0.52 m, [F-] = 0.67 m [H+] =
Putting the values,
The equilibrium will shift towards left because of positive
Want to see more full solutions like this?
Chapter 10 Solutions
Chemical Principles
- Phenol is the starting material for the synthesis of 2,3,4,5,6-pentachlorophenol, known al-ternatively as pentachlorophenol, or more simply as penta. At one time, penta was widely used as a wood preservative for decks, siding, and outdoor wood furniture. Draw the structural formula for pentachlorophenol and describe its synthesis from phenol.arrow_forward12 Mass Spectrometry (d) This unknown contains oxygen, but it does not show any significant infrared absorption peaks above 3000 cm . 59 100- BO 40 Relative Abundance M(102) - 15 20 25 30 35 40 45 50 5 60 65 70 75 80 85 90 95 100 105 mizarrow_forwardDraw a Haworth projection of a common cyclic form of this monosaccharide: H HO H HO H HO H H -OH CH2OH Click and drag to start drawing a structure. Х : Darrow_forward
- : Draw the structure of valylasparagine, a dipeptide made from valine and asparagine, as it would appear at physiological pH. Click and drag to start drawing a structure. P Darrow_forwardDraw the Haworth projection of α-L-mannose. You will find helpful information in the ALEKS Data resource. Click and drag to start drawing a structure. : ཊི Х Darrow_forwardDraw the structure of serine at pH 6.8. Click and drag to start drawing a structure. : d كarrow_forward
- Take a look at this molecule, and then answer the questions in the table below it. CH2OH H H H OH OH OH CH2OH H H H H OH H H OH H OH Is this a reducing sugar? yes α β ロ→ロ no ☑ yes Does this molecule contain a glycosidic bond? If you said this molecule does contain a glycosidic bond, write the symbol describing it. O no 0+0 If you said this molecule does contain a glycosidic bond, write the common names (including anomer and enantiomer labels) of the molecules that would be released if that bond were hydrolyzed. If there's more than one molecule, separate each name with a comma. ☐arrow_forwardAnswer the questions in the table below about this molecule: H₂N-CH₂ -C—NH–CH–C—NH–CH—COO- CH3 CH CH3 What kind of molecule is this? 0= CH2 C If you said the molecule is a peptide, write a description of it using 3-letter codes separated ☐ by dashes. polysaccharide peptide amino acid phospolipid none of the above Хarrow_forwardDraw a Haworth projection of a common cyclic form of this monosaccharide: CH₂OH C=O HO H H -OH H OH CH₂OH Click and drag to start drawing a structure. : ☐ Х S '☐arrow_forward
- Nucleophilic Aromatic Substitution 22.30 Predict all possible products formed from the following nucleophilic substitution reactions. (a) (b) 9 1. NaOH 2. HCI, H₂O CI NH₁(!) +NaNH, -33°C 1. NaOH 2. HCl, H₂Oarrow_forwardSyntheses 22.35 Show how to convert toluene to these compounds. (a) -CH,Br (b) Br- -CH3 22.36 Show how to prepare each compound from 1-phenyl-1-propanone. 1-Phenyl-1-propanone ہتی. Br. (b) Br (racemic) 22.37 Show how to convert ethyl benzene to (a) 2,5-dichlorobenzoic acid and (b) 2,4-dichlorobenzoic acid. 22.38 Show reagents and conditions to bring about the following conversions. (a) 9 NH2 8 CO₂H NH2 CO₂Et (d) NO2 NH2 S NH₂ NO2 CHS CHarrow_forwardive the major organic product(s) of each of the following reactions or sequences of reactions. Show all rant stereochemistry. [10 only] A. B. NaN3 1. LiAlH4, ether Br 2. H₂O CH3 HNO3 H₂/Pt H₂SO ethanol C. 0 0 CH3CC1 NaOH NHCCH AICI H₂O . NH₂ CH3CH2 N CH2CH3 + HCI CH₂CH 3 1. LIAIH, THE 2. H₂Oarrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning





