Fluid Mechanics, 8 Ed
Fluid Mechanics, 8 Ed
8th Edition
ISBN: 9789385965494
Author: Frank White
Publisher: MCGRAW-HILL HIGHER EDUCATION
Question
Book Icon
Chapter 10, Problem 10.93P
To determine

i.

The velocity V1 for the given flow.

Expert Solution
Check Mark

Answer to Problem 10.93P

The velocity V1for the given flow is 1.5 m/s 

Explanation of Solution

Given:

y1 = 1 m

y3 = 0.4 m

Concept Used:

E1=y1+V122gForuniformflow,q=y1V1=y2V2

Calculation:

E1=E3y1+V122g=y3+V322g1+V122*9.81=0.4+V322*9.81........(1)Foruniformflow,q=y1V1=y3V31*V1=0.4*V3.....(2)Onsolving(1)and(2),wegetV1=1.5m/sV3=3.74m/s

Conclusion:

The velocity V1 for the given flow is 1.5 m/s.

To determine

ii.

The velocity V3 for the given flow.

Expert Solution
Check Mark

Answer to Problem 10.93P

The velocity V1for the given flow is 3.74 m/s

Explanation of Solution

Given:

y1 = 1 m

y3 = 0.4 m

Concept Used:

E1=y1+V122gForuniformflow,q=y1V1=y2V2

Calculation:

E1=E3y1+V122g=y3+V322g1+V122*9.81=0.4+V322*9.81........(1)Foruniformflow,q=y1V1=y3V31*V1=0.4*V3.....(2)Onsolving(1)and(2),wegetV1=1.5m/sV3=3.74m/s

Conclusion:

The velocity V1 for the given flow is 3.74 m/s.

To determine

iii.

The depth y4 for the given flow.

Expert Solution
Check Mark

Answer to Problem 10.93P

The depth y4for the given flow is 0.89 m

Explanation of Solution

Given:

y1 = 1 m

y3 = 0.4 m

Concept Used:

Fr=VVc 2 y 4 y 3 =1+ (1+8F r 3 2 ) 1/2

Calculation:

Fr3=V3V3cFr2=3.74g* y 23.749.81*0.4Fr2=1.89Theflowissupercritical 2 y 4 y 3 =1+ (1+8F r 3 2 ) 1/2 2 y 4 0.4 =1+ (1+8* 1.89 2 ) 1/2 y4=0.89m.

Conclusion:

The depth y4 for the given flow is 0.89 m.

To determine

iv.

The bump height h for the given flow.

Expert Solution
Check Mark

Answer to Problem 10.93P

The height of the bump is 0.2m 

Explanation of Solution

Given:

y1 = 1 m

y3 = 0.4 m

Concept Used:

Fr=VVcE1=y1+V122gForuniformflow,q=y1V1=y2V2

Calculation:

Fr2=V2V2cForthebumpflow,theflowmustbecrititcalFr2=1V2=V2c*Fr2V2=gy2*1V2=9.81*y2.....(3)Foruniformflow,q=y1V1=y2V21*1.5m/s=y2*V2Substituteequation(3)9.81*y23/2=1.5y2=0.612mV2=9.81*y2V2=9.81*0.612V2=2.45m/sE1=E2y1+V122g=y2+V222g+h1+1.522*9.81=0.612+2.4522*9.81+hh=0.2m

Conclusion:

The height of the bump is 0.2m .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
TELEGRAM 426 LTE 11. 5:59 Dynamic تم Dynamic Fluids with Applications@le... H.W Q2: The oil tank for a hydraulic system (shown in Fig. 6.5) has the following details: (a) The oil tank is air pressurized at 68.97 kPa gauge pressure. (b) The inlet to the pump is 3.048 m below the oil level. (c) The pump flow rate is 0.001896 m3/s. (d) The specific gravity of oil is 0.9. (e) The kinematic viscosity of oil is 100 cS. (f) Assume that the pressure drop across the strainer is 6.897 kPa. (g) The pipe diameter is 38.1 mm. (h) The total length of the pipe is 6.097 m. Find the pressure at station 2. by Dr. Ali Khaleel Kareem H.W by Dr. Ali Khaleel Kareem Breather Three standard elbows (A, B and C) 3 m Pump Figure 6.5 38 mm (ID) Pipe length = 6m 20 21
A 3 m x 5 m section of wall of the cold room is not insulated, and the temperature at the outer surface of this section is measured to be 7°C. The temperature of the outside room is 30°C, and the combined convection and radiation heat transfer coefficient at the surface of the outer wall is 10 W/m2°C. It is proposed to insulate this section of the furnace wall with glass wool insulation (k = 0.038 W/m°C) in order to reduce the heat transfer by 90%. Assuming the outer surface temperature of the cold room wall section still remains at about 7°C, determine the thickness of the insulation that needs to be used.     The company is questioning whether to insulate the section of piping between the evaporator and the compressor. Present (using equations to support your reasoning) whether you would support this idea or not
Q1.Given the unity feedback system with a forward path transfer function, G(s) = = K (s+1)(s+2)(s+6) . Do the following: (a) Draw the root locus (b) Find the gain, K, and natural frequency for a damping ratio 0.5. (c) Find the range or value of gain, K for i. overdamped ii. critically damped iii. Undamped iv. underdamped

Chapter 10 Solutions

Fluid Mechanics, 8 Ed

Ch. 10 - Prob. 10.11PCh. 10 - Prob. 10.12PCh. 10 - Prob. 10.13PCh. 10 - Prob. 10.14PCh. 10 - Prob. 10.15PCh. 10 - Prob. 10.16PCh. 10 - Prob. 10.17PCh. 10 - Prob. 10.18PCh. 10 - Prob. 10.19PCh. 10 - An unfinished concrete sewer pipe, of diameter 4...Ch. 10 - Prob. 10.21PCh. 10 - Prob. 10.22PCh. 10 - Prob. 10.23PCh. 10 - Prob. 10.24PCh. 10 - Prob. 10.25PCh. 10 - Prob. 10.26PCh. 10 - Prob. 10.27PCh. 10 - Prob. 10.28PCh. 10 - Prob. 10.29PCh. 10 - Prob. 10.30PCh. 10 - Prob. 10.31PCh. 10 - Prob. 10.32PCh. 10 - Prob. 10.33PCh. 10 - Prob. 10.34PCh. 10 - Prob. 10.35PCh. 10 - Prob. 10.36PCh. 10 - Prob. 10.37PCh. 10 - Prob. 10.38PCh. 10 - Pl0.39 A trapezoidal channel has n = 0.022 and Sn...Ch. 10 - Prob. 10.40PCh. 10 - Prob. 10.41PCh. 10 - Prob. 10.42PCh. 10 - Prob. 10.43PCh. 10 - Prob. 10.44PCh. 10 - Prob. 10.45PCh. 10 - Prob. 10.46PCh. 10 - Prob. 10.47PCh. 10 - Prob. 10.48PCh. 10 - Prob. 10.49PCh. 10 - Prob. 10.50PCh. 10 - Prob. 10.51PCh. 10 - Prob. 10.52PCh. 10 - Prob. 10.53PCh. 10 - A clay tile V-shaped channel has an included angle...Ch. 10 - Prob. 10.55PCh. 10 - Prob. 10.56PCh. 10 - Prob. 10.57PCh. 10 - Prob. 10.58PCh. 10 - Prob. 10.59PCh. 10 - Prob. 10.60PCh. 10 - P10.59 Uniform water flow in a wide brick channel...Ch. 10 - P10.62 Consider the flow in a wide channel over a...Ch. 10 - Prob. 10.63PCh. 10 - Prob. 10.64PCh. 10 - Prob. 10.65PCh. 10 - Prob. 10.66PCh. 10 - Prob. 10.67PCh. 10 - Prob. 10.68PCh. 10 - Given is the flow of a channel of large width b...Ch. 10 - Prob. 10.70PCh. 10 - Prob. 10.71PCh. 10 - Prob. 10.72PCh. 10 - Prob. 10.73PCh. 10 - Prob. 10.74PCh. 10 - Prob. 10.75PCh. 10 - Prob. 10.76PCh. 10 - Prob. 10.77PCh. 10 - Prob. 10.78PCh. 10 - Prob. 10.79PCh. 10 - Prob. 10.80PCh. 10 - Prob. 10.81PCh. 10 - Prob. 10.82PCh. 10 - Prob. 10.83PCh. 10 - Prob. 10.84PCh. 10 - Pl0.85 The analogy between a hydraulic jump and a...Ch. 10 - Prob. 10.86PCh. 10 - Prob. 10.87PCh. 10 - Prob. 10.88PCh. 10 - Prob. 10.89PCh. 10 - Prob. 10.90PCh. 10 - Prob. 10.91PCh. 10 - Prob. 10.92PCh. 10 - Prob. 10.93PCh. 10 - Prob. 10.94PCh. 10 - Prob. 10.95PCh. 10 - Prob. 10.96PCh. 10 - Prob. 10.97PCh. 10 - Prob. 10.98PCh. 10 - Prob. 10.99PCh. 10 - Prob. 10.100PCh. 10 - Prob. 10.101PCh. 10 - Prob. 10.102PCh. 10 - Prob. 10.103PCh. 10 - Prob. 10.104PCh. 10 - Prob. 10.105PCh. 10 - Prob. 10.106PCh. 10 - Prob. 10.107PCh. 10 - Prob. 10.108PCh. 10 - Prob. 10.109PCh. 10 - Prob. 10.110PCh. 10 - Prob. 10.111PCh. 10 - Prob. 10.112PCh. 10 - Prob. 10.113PCh. 10 - Prob. 10.114PCh. 10 - Prob. 10.115PCh. 10 - Prob. 10.116PCh. 10 - Prob. 10.117PCh. 10 - Prob. 10.118PCh. 10 - Prob. 10.119PCh. 10 - The rectangular channel in Fig. P10.120 contains a...Ch. 10 - Prob. 10.121PCh. 10 - Prob. 10.122PCh. 10 - Prob. 10.123PCh. 10 - Prob. 10.124PCh. 10 - Prob. 10.125PCh. 10 - Prob. 10.126PCh. 10 - Prob. 10.127PCh. 10 - Prob. 10.128PCh. 10 - Prob. 10.1WPCh. 10 - Prob. 10.2WPCh. 10 - Prob. 10.3WPCh. 10 - Prob. 10.4WPCh. 10 - Prob. 10.5WPCh. 10 - Prob. 10.6WPCh. 10 - Prob. 10.7WPCh. 10 - Prob. 10.8WPCh. 10 - Prob. 10.9WPCh. 10 - Prob. 10.10WPCh. 10 - Prob. 10.11WPCh. 10 - Prob. 10.12WPCh. 10 - Prob. 10.13WPCh. 10 - Prob. 10.1FEEPCh. 10 - Prob. 10.2FEEPCh. 10 - Prob. 10.3FEEPCh. 10 - Prob. 10.4FEEPCh. 10 - Prob. 10.5FEEPCh. 10 - Prob. 10.6FEEPCh. 10 - Prob. 10.7FEEPCh. 10 - February 1998 saw the failure of the earthen dam...Ch. 10 - Prob. 10.2CPCh. 10 - Prob. 10.3CPCh. 10 - Prob. 10.4CPCh. 10 - Prob. 10.5CPCh. 10 - Prob. 10.6CPCh. 10 - Prob. 10.7CPCh. 10 - Prob. 10.1DPCh. 10 - Prob. 10.2DP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY