A merry-go-round is stationary. A clog is running around the merry-go-round on the ground just outside its circumference, moving with a constant angular speed of 0.750 rad/s. The dog does not change his pace when he sees what he has been looking for: a bone resting on the edge of the merry-go-round one- third of a revolution in front of him. At the instant the dog sees the bone ( t = 0), the merry-go-round begins to move in the direction the dog is running, with a constant angular acceleration of 0.015 0 rad/s 2 . (a) At what time will the dog first reach the bone? (b) The confused dog keeps running and passes the bone. How long after the merry-go-round starts to turn do the dog and the bone draw even with each other for the second time?
A merry-go-round is stationary. A clog is running around the merry-go-round on the ground just outside its circumference, moving with a constant angular speed of 0.750 rad/s. The dog does not change his pace when he sees what he has been looking for: a bone resting on the edge of the merry-go-round one- third of a revolution in front of him. At the instant the dog sees the bone ( t = 0), the merry-go-round begins to move in the direction the dog is running, with a constant angular acceleration of 0.015 0 rad/s 2 . (a) At what time will the dog first reach the bone? (b) The confused dog keeps running and passes the bone. How long after the merry-go-round starts to turn do the dog and the bone draw even with each other for the second time?
Solution Summary: The author explains how to determine the time when the dog will meet the bone on the merry-go-round.
A merry-go-round is stationary. A clog is running around the merry-go-round on the ground just outside its circumference, moving with a constant angular speed of 0.750 rad/s. The dog does not change his pace when he sees what he has been looking for: a bone resting on the edge of the merry-go-round one- third of a revolution in front of him. At the instant the dog sees the bone (t = 0), the merry-go-round begins to move in the direction the dog is running, with a constant angular acceleration of 0.015 0 rad/s2. (a) At what time will the dog first reach the bone? (b) The confused dog keeps running and passes the bone. How long after the merry-go-round starts to turn do the dog and the bone draw even with each other for the second time?
Definition Definition Rate of change of angular velocity. Angular acceleration indicates how fast the angular velocity changes over time. It is a vector quantity and has both magnitude and direction. Magnitude is represented by the length of the vector and direction is represented by the right-hand thumb rule. An angular acceleration vector will be always perpendicular to the plane of rotation. Angular acceleration is generally denoted by the Greek letter α and its SI unit is rad/s 2 .
Question B3
Consider the following FLRW spacetime:
t2
ds² = -dt² +
(dx²
+ dy²+ dz²),
t2
where t is a constant.
a)
State whether this universe is spatially open, closed or flat.
[2 marks]
b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function
of time t, starting at t = 0.
[3 marks]
c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy
B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect
to galaxy A.
d) The Friedmann equations are
2
k
8πG
а
4πG
+
a²
(p+3p).
3
a
3
[5 marks]
Use these equations to determine the energy density p(t) and the pressure p(t) for the
FLRW spacetime specified at the top of the page.
[5 marks]
e) Given the result of question B3.d, state whether the FLRW universe in question is (i)
radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv)
none of the previous. Justify your answer.
f)
[5 marks]
A conformally…
SECTION B
Answer ONLY TWO questions in Section B
[Expect to use one single-sided A4 page for each Section-B sub question.]
Question B1
Consider the line element
where w is a constant.
ds²=-dt²+e2wt dx²,
a) Determine the components of the metric and of the inverse metric.
[2 marks]
b) Determine the Christoffel symbols. [See the Appendix of this document.]
[10 marks]
c)
Write down the geodesic equations.
[5 marks]
d) Show that e2wt it is a constant of geodesic motion.
[4 marks]
e)
Solve the geodesic equations for null geodesics.
[4 marks]
Page 2
SECTION A
Answer ALL questions in Section A
[Expect to use one single-sided A4 page for each Section-A sub question.]
Question A1
SPA6308 (2024)
Consider Minkowski spacetime in Cartesian coordinates th
=
(t, x, y, z), such that
ds² = dt² + dx² + dy² + dz².
(a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V.
(b) Consider now the coordinate system x' (u, v, y, z) such that
u =t-x,
v=t+x.
[2 marks]
Write down the line element, the metric, the Christoffel symbols and the Riemann curvature
tensor in the new coordinates. [See the Appendix of this document.]
[5 marks]
(c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify
explicitly that V. V is invariant under the coordinate transformation.
Question A2
[5 marks]
Suppose that A, is a covector field, and consider the object
Fv=AAμ.
(a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a
coordinate transformation.
[5 marks]
(b)…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.