CHEMISTRY 1111 LAB MANUAL >C<
1st Edition
ISBN: 9781307092097
Author: Chang
Publisher: MCG/CREATE
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 10.90QP
So-called greenhouse gases, which contribute to global warming, have a dipole moment or can be bent or distorted into shapes that have a dipole moment. Which of the following gases are greenhouse gases: N2, O2, O3, CO, CO2, NO2, N2O, CH4, CFCl3?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
When 15.00 mL of 3.00 M NaOH was mixed in a calorimeter with 12.80 mL of 3.00 M HCl, both initially at room temperature (22.00 C), the temperature increased to 29.30 C. The resultant salt solution had a mass of 27.80 g and a specific heat capacity of 3.74 J/Kg. What is heat capacity of the calorimeter (in J/C)? Note: The molar enthalpy of neutralization per mole of HCl is -55.84 kJ/mol.
Q6: Using acetic acid as the acid, write the balanced chemical equation for the protonation of
the two bases shown (on the -NH2). Include curved arrows to show the mechanism.
O₂N-
O₂N.
-NH2
-NH2
a) Which of the two Bronsted bases above is the stronger base? Why?
b) Identify the conjugate acids and conjugate bases for the reactants.
c) Identify the Lewis acids and bases in the reactions.
Q5: For the two reactions below:
a) Use curved electron-pushing arrows to show the mechanism for the reaction in the
forward direction. Redraw the compounds to explicitly illustrate all bonds that are broken
and all bonds that are formed.
b) Label Bronsted acids and bases in the left side of the reactions.
c) For reaction A, which anionic species is the weakest base? Which neutral compound is
the stronger acid? Is the forward or reverse reaction favored?
d) Label Lewis acids and bases, nucleophiles and electrophiles in the left side of the
reactions.
A.
용
CH3OH
я хон
CH3O
OH
B. HBr
CH3ONa
NaBr
CH3OH
Chapter 10 Solutions
CHEMISTRY 1111 LAB MANUAL >C<
Ch. 10.1 - Use the VSEPR model to predict the geometry of (a)...Ch. 10.1 - Which of the following geometries has a greater...Ch. 10.2 - Does the AlCl3 molecule have a dipole moment?Ch. 10.2 - Carbon dioxide has a linear geometry and is...Ch. 10.3 - Compare the Lewis theory and the valence bond...Ch. 10.4 - Determine the hybridization state of the...Ch. 10.4 - Describe the hybridization state of Se in SeF6.Ch. 10.4 - What is the hybridization of Xe in XeF4Ch. 10.5 - Describe the bonding in the hydrogen cyanide...Ch. 10.5 - Which of the following pairs of atomic orbitals on...
Ch. 10.6 - One way to account for the fact that an O2...Ch. 10.7 - Estimate the bond enthalpy (kJ/mol) of the H2+...Ch. 10.7 - Which of the following species has a longer bond...Ch. 10.8 - Describe the bonding in the nitrate ion (NO3) in...Ch. 10 - How is the geometry of a molecule defined and why...Ch. 10 - Sketch the shape of a linear triatomic molecule, a...Ch. 10 - How many atoms are directly bonded to the central...Ch. 10 - Discuss the basic features of the VSEPR model....Ch. 10 - Prob. 10.5QPCh. 10 - Prob. 10.6QPCh. 10 - Predict the geometries of the following species...Ch. 10 - Predict the geometries of the following species:...Ch. 10 - Predict the geometry of the following molecules...Ch. 10 - Predict the geometry of the following molecules...Ch. 10 - Predict the geometry of the following molecules...Ch. 10 - Predict the geometries of the following ions: (a)...Ch. 10 - Describe the geometry around each of the three...Ch. 10 - Which of the following species are tetrahedral?...Ch. 10 - Prob. 10.15QPCh. 10 - Prob. 10.16QPCh. 10 - Prob. 10.17QPCh. 10 - The bonds in beryllium hydride (BeH2) molecules...Ch. 10 - Referring to Table 10.3, arrange the following...Ch. 10 - The dipole moments of the hydrogen halides...Ch. 10 - List the following molecules in order of...Ch. 10 - Does the molecule OCS have a higher or lower...Ch. 10 - Which of the molecules (a) or (b) has a higher...Ch. 10 - Prob. 10.24QPCh. 10 - What is valence bond theory? How does it differ...Ch. 10 - Use valence bond theory to explain the bonding in...Ch. 10 - Prob. 10.27QPCh. 10 - Prob. 10.28QPCh. 10 - What is the angle between the following two hybrid...Ch. 10 - How would you distinguish between a sigma bond and...Ch. 10 - Describe the bonding scheme of the AsH3 molecule...Ch. 10 - What is the hybridization state of Si in SiH4 and...Ch. 10 - Describe the change in hybridization (if any) of...Ch. 10 - Consider the reaction BF3+NH3F3BNH3 Describe the...Ch. 10 - What hybrid orbitals are used by nitrogen atoms in...Ch. 10 - What are the hybrid orbitals of the carbon atoms...Ch. 10 - Specify which hybrid orbitals are used by carbon...Ch. 10 - Prob. 10.38QPCh. 10 - The allene molecule H2CCCH2 is linear (the three C...Ch. 10 - Prob. 10.40QPCh. 10 - How many sigma bonds and pi bonds are there in...Ch. 10 - How many pi bonds and sigma bonds are there in the...Ch. 10 - Give the formula of a cation comprised of iodine...Ch. 10 - Give the formula of an anion comprised of iodine...Ch. 10 - What is molecular orbital theory? How does it...Ch. 10 - Sketch the shapes of the following molecular...Ch. 10 - 10.47 Compare the Lewis theory, valence bond...Ch. 10 - Explain the significance of bond order. Can bond...Ch. 10 - Explain in molecular orbital terms the changes in...Ch. 10 - The formation of H2 from two H atoms is an...Ch. 10 - Prob. 10.51QPCh. 10 - Arrange the following species in order of...Ch. 10 - Prob. 10.53QPCh. 10 - Which of these species has a longer bond, B2 or...Ch. 10 - Acetylene (C2H2) has a tendency to lose two...Ch. 10 - Compare the Lewis and molecular orbital treatments...Ch. 10 - Explain why the bond order of N2 is greater than...Ch. 10 - Compare the relative stability of the following...Ch. 10 - Use molecular orbital theory to compare the...Ch. 10 - A single bond is almost always a sigma bond, and a...Ch. 10 - In 2009 the ion N23 was isolated. Use a molecular...Ch. 10 - The following potential energy curve represents...Ch. 10 - Prob. 10.63QPCh. 10 - Prob. 10.64QPCh. 10 - Prob. 10.65QPCh. 10 - Explain why the symbol on the left is a better...Ch. 10 - Determine which of these molecules has a more...Ch. 10 - Nitryl fluoride (FNO2) is very reactive...Ch. 10 - Describe the bonding in the nitrate ion NO3 in...Ch. 10 - Prob. 10.70QPCh. 10 - Which of the following species is not likely to...Ch. 10 - Draw the Lewis structure of mercury(II) bromide....Ch. 10 - Sketch the bond moments and resultant dipole...Ch. 10 - Although both carbon and silicon are in Group 4A,...Ch. 10 - Acetaminophen is the active ingredient in Tylenol....Ch. 10 - Caffeine is a stimulant drug present in coffee....Ch. 10 - Predict the geometry of sulfur dichloride (SCl2)...Ch. 10 - Antimony pentafluoride, SbF5, reacts with XeF4 and...Ch. 10 - Draw Lewis structures and give the other...Ch. 10 - Predict the bond angles for the following...Ch. 10 - Briefly compare the VSEPR and hybridization...Ch. 10 - Describe the hybridization state of arsenic in...Ch. 10 - Draw Lewis structures and give the other...Ch. 10 - Which of the following molecules and ions are...Ch. 10 - Prob. 10.85QPCh. 10 - The N2F2 molecule can exist in either of the...Ch. 10 - Cyclopropane (C3H6) has the shape of a triangle in...Ch. 10 - The compound 1,2-dichloroethane (C2H4Cl2) is...Ch. 10 - Does the following molecule have a dipole moment?...Ch. 10 - So-called greenhouse gases, which contribute to...Ch. 10 - The bond angle of SO2 is very close to 120, even...Ch. 10 - 3-azido-3-deoxythymidine, shown here, commonly...Ch. 10 - The following molecules (AX4Y2) all have...Ch. 10 - The compounds carbon tetrachloride (CCl4) and...Ch. 10 - Prob. 10.95QPCh. 10 - What are the hybridization states of the C and N...Ch. 10 - Use molecular orbital theory to explain the...Ch. 10 - Referring to the Chemistry in Action essay...Ch. 10 - Which of the molecules (a)(c) are polar?Ch. 10 - Prob. 10.100QPCh. 10 - The stable allotropic form of phosphorus is P4, in...Ch. 10 - Referring to Table 9.4, explain why the bond...Ch. 10 - Use molecular orbital theory to explain the...Ch. 10 - The ionic character of the bond in a diatomic...Ch. 10 - Prob. 10.105QPCh. 10 - Prob. 10.106QPCh. 10 - Aluminum trichloride (AlCl3) is an...Ch. 10 - The molecules cis-dichloroethylene and...Ch. 10 - Prob. 10.109QPCh. 10 - Prob. 10.110QPCh. 10 - The molecule benzyne (C6H4) is a very reactive...Ch. 10 - Assume that the third-period element phosphorus...Ch. 10 - Consider a N2 molecule in its first excited...Ch. 10 - Prob. 10.114QPCh. 10 - Prob. 10.116QPCh. 10 - Draw the Lewis structure of ketene (C2H2O) and...Ch. 10 - TCDD, or 2,3,7,8-tetrachlorodibenzo-p-dioxin, is a...Ch. 10 - Write the electron configuration of the cyanide...Ch. 10 - Prob. 10.120QPCh. 10 - The geometries discussed in this chapter all lend...Ch. 10 - Prob. 10.122QPCh. 10 - Which of the following ions possess a dipole...Ch. 10 - Given that the order of molecular orbitals for NO...Ch. 10 - Shown here are molecular models of SX4 for X = F,...Ch. 10 - Based on what you have learned from this chapter...Ch. 10 - How many carbon atoms are contained in one square...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- potential energy Br b) Translate the Newman projection below to its wedge-and-dash drawing. F H. OH CH3 CI c) Isopentane (2-methylbutane) is a compound containing a branched carbon chain. Draw a Newman projection of six conformations about the C2-C3 bond of isopentane. On the curve of potential energy versus angle of internal rotation for isopentane, label each energy maximum and minimum with one of the conformations. 0° 。 F A B D C angle of internal rotation E F 360° (=0°) JDownlarrow_forwardQ7: Identify the functional groups in these molecules a) CH 3 b) Aspirin: HO 'N' Capsaicin HO O CH3 CH 3arrow_forwardQ2: Name the following alkanesarrow_forward
- 1. Complete the following table in your laboratory notebook. Substance Formula Methanol CH3OH Ethanol C2H5OH 1-Propanol C3H7OH 1-Butanol C4H9OH Pentane C5H12 Hexane C6H14 Water H₂O Acetone C3H60 Structural Formula Molecular Weight (g/mol) Hydrogen Bond (Yes or No)arrow_forwardQ1: Compare the relative acidity in each pair of compounds. Briefly explain. (a) CH3OH vs NH 3 (b) HF vs CH3COOH (c) NH3 vs CH4 (d) HCI vs HI (e) CH3COOH vs CH3SH (f) H₂C=CH2 vs CH3 CH3 (g) compare the acidity of the two bolded hydrogens O. H N- (h) compare the acidity of the two bolded hydrogens, draw resonance structures to explain H H Harrow_forwardQ3: Rank the following molecules in order of decreasing boiling point: (a) 3-methylheptane; (b) octane; (c) 2,4-dimethylhexane; (d) 2,2,4-trimethylpentane.arrow_forward
- Q5: Conformations of Alkanes a) Draw a Newman Projection of the compound below about the C2-C3 bond. H3C Cli... H IIIH Br CH3arrow_forwardThe ability of atoms to associate with each other depends ona) the electronic structure and its spatial orientation.b) the electron affinity.c) The other two answers are correct.arrow_forwardWhat is the final volume after you reach the final temperature? I put 1.73 but the answer is wrong not sure why The initial volume of gas is 1.60 LL , the initial temperature of the gas is 23.0 °C°C , and the system is in equilibrium with an external pressure of 1.2 bar (given by the sum of a 1 bar atmospheric pressure and a 0.2 bar pressure due to a brick that rests on top of the piston). Then, as you did in Exercise 1, you heat the gas slowly until the temperature reaches 48.2 °Carrow_forward
- Q4: Identify the type of Carbon ( methyl, primary, secondary, etc. ) indicated by this arrow.arrow_forwardQ3: Curved Arrows, Lewis Acids & Bases, Nucleophiles and Electrophiles Considering the following reactions: a) Predict the products to complete the reactions. b) Use curved electron-pushing arrows to show the mechanism for the reaction in the forward direction. Redraw some of the compounds to explicitly illustrate all bonds that are broken and all bonds that are formed. c) Label Lewis acids and bases, nucleophiles and electrophiles in the reactions. A. S + AICI 3 B. + H₂Oarrow_forward3. A thermometer is placed in a test tube of chipped ice at -5.0 °C. The temperature is recorded at the time intervals shown below until room temperature is reached. Plot the data given below on graph paper and explain all flat, horizontal portions of the curve. Plot time on the X-axis! Time (min) Temperature (°C) 0 -5.0 2 -2.5 4 -1.0 6 0.0 10 0.0 15 0.0 20 0.0 25 0.0 30 1.5 35 4.0 40 8.0 45 11.5 50 15.0 55 17.5 60 19.0 65 20.0 70 20.0 75 20.0 80 20.0arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
General Chemistry 1A. Lecture 12. Two Theories of Bonding.; Author: UCI Open;https://www.youtube.com/watch?v=dLTlL9Z1bh0;License: CC-BY