
Concept explainers
Predict the bond angles for the following molecules: (a) BeCl2, (b) BCl3, (c) CCl4, (d) CH3Cl, (e) Hg2Cl2 (arrangement of atoms: ClHgHgCl), (f) SnCl2, (g) H2O2, (h) SnH4.
(a)

Interpretation: The bond angle of the given molecule should be found.
Concept Introduction:
- Bond angle measured that made between two nearby bonds. The angles between two adjacent bonds are known as bond angle.
- Using VSEPR theory and Lewis structure, the exact geometry of a molecule can be obtained.
- In VSEPR, the geometry of the molecule is explained based on minimizing electrostatic repulsion between the molecules’ valence electrons around a central atom
- Lewis structures is also known as Lewis dot structures which represents the bonding between atoms of a molecule and the lone pairs of electrons that may exist in the molecule.
Answer to Problem 10.80QP
The bond angle of is
.
Explanation of Solution
To find: The bond angle of the given molecule
Given molecule is
.
Lewis structure of the given molecule is drawn below.
is a triatomic molecule . Here the central atom beryllium atom does not have any lone pair of electrons whereas both terminal chlorine atoms have 3 pairs of electron. It is a
type molecule. Since there are only two bonds, there is only one bond angle. Since there is no lone pair on the central atom, to minimize the repulsion, they form a linear geometry. So the bond angle between two atoms is
.
(b)

Interpretation: The bond angle of the given molecule should be found.
Concept Introduction:
- Bond angle measured that made between two nearby bonds. The angles between two adjacent bonds are known as bond angle.
- Using VSEPR theory and Lewis structure, the exact geometry of a molecule can be obtained.
- In VSEPR, the geometry of the molecule is explained based on minimizing electrostatic repulsion between the molecules’ valence electrons around a central atom
- Lewis structures is also known as Lewis dot structures which represents the bonding between atoms of a molecule and the lone pairs of electrons that may exist in the molecule.
Answer to Problem 10.80QP
The bond angle of is
.
Explanation of Solution
To find: The bond angle of the given molecule
Given molecule is
.
Lewis structure of the given molecule is drawn below.
contains four atoms. Here the central atom boron atom does not have any lone pair of electrons whereas the terminal chlorine atoms have 3 pairs of electron. It is a
type molecule. Since there are only three bonds, there are two bond angle. Since there is no lone pair on the central atom, to minimize the repulsion, they form a trigonal planar geometry. So the bond angle between two atoms is
.
(c)

Interpretation: The bond angle of the given molecule should be found.
Concept Introduction:
- Bond angle measured that made between two nearby bonds. The angles between two adjacent bonds are known as bond angle.
- Using VSEPR theory and Lewis structure, the exact geometry of a molecule can be obtained.
- In VSEPR, the geometry of the molecule is explained based on minimizing electrostatic repulsion between the molecules’ valence electrons around a central atom
- Lewis structures is also known as Lewis dot structures which represents the bonding between atoms of a molecule and the lone pairs of electrons that may exist in the molecule.
Answer to Problem 10.80QP
The bond angle of is
.
Explanation of Solution
To find: The bond angle of the given molecule
Given molecule is
.
Lewis structure of the given molecule is drawn below.
contains five atoms. Here the central atom carbon atom does not have any lone pair of electrons whereas the terminal chlorine atoms have 3 pairs of electron. It is a
type molecule. Since there is no lone pair on the central atom, to minimize the repulsion, they form a tetrahedral geometry. So the bond angle between two atoms is
.
(d)

Interpretation: The bond angle of the given molecule should be found.
Concept Introduction:
- Bond angle measured that made between two nearby bonds. The angles between two adjacent bonds are known as bond angle.
- Using VSEPR theory and Lewis structure, the exact geometry of a molecule can be obtained.
- In VSEPR, the geometry of the molecule is explained based on minimizing electrostatic repulsion between the molecules’ valence electrons around a central atom
- Lewis structures is also known as Lewis dot structures which represents the bonding between atoms of a molecule and the lone pairs of electrons that may exist in the molecule.
Answer to Problem 10.80QP
The bond angle of is
.
Explanation of Solution
To find: The bond angle of the given molecule
Given molecule is
.
Lewis structure of the given molecule is drawn below.
contains five atoms. Here the central atom carbon atom does not have any lone pair of electrons whereas the terminal chlorine atom has 3 pairs of electron. It is a
type molecule. Since there is no lone pair on the central atom, to minimize the repulsion, they form a distorted tetrahedral geometry because of the size difference of terminal chlorine and hydrogen atoms. So the bond angle between two atoms is
.
(e)

Interpretation: The bond angle of the given molecule should be found.
Concept Introduction:
- Bond angle measured that made between two nearby bonds. The angles between two adjacent bonds are known as bond angle.
- Using VSEPR theory and Lewis structure, the exact geometry of a molecule can be obtained.
- In VSEPR, the geometry of the molecule is explained based on minimizing electrostatic repulsion between the molecules’ valence electrons around a central atom
- Lewis structures is also known as Lewis dot structures which represents the bonding between atoms of a molecule and the lone pairs of electrons that may exist in the molecule.
Answer to Problem 10.80QP
The bond angle of is
.
Explanation of Solution
To find: The bond angle of the given molecule
Given molecule is
.
Lewis structure of the given molecule is drawn below.
In the case of , both mercury atom does not have any lone pair of electrons whereas the terminal chlorine atoms have 3 pairs of electron. Both the mercury atom is of
type molecule. . Since there is no lone pair on the central atom, to minimize the repulsion, they form a linear geometry. So the bond angle between two atoms is
.
(f)

Interpretation: The bond angle of the given molecule should be found.
Concept Introduction:
- Bond angle measured that made between two nearby bonds. The angles between two adjacent bonds are known as bond angle.
- Using VSEPR theory and Lewis structure, the exact geometry of a molecule can be obtained.
- In VSEPR, the geometry of the molecule is explained based on minimizing electrostatic repulsion between the molecules’ valence electrons around a central atom
- Lewis structures is also known as Lewis dot structures which represents the bonding between atoms of a molecule and the lone pairs of electrons that may exist in the molecule.
Answer to Problem 10.80QP
The bond angle of is
.
Explanation of Solution
To find: The bond angle of the given molecule
Given molecule is
.
Lewis structure of the given molecule is drawn below.
In the case of , the central atom tin atom have a lone pair of electron whereas the terminal chlorine atoms have 3 pairs of electron and is a
with one lone pair of electron type molecule. There are only two bonds so there is only one bond angle. Since there is one lone pair on the central atom, to minimize the repulsion, they form a bent geometry. So the bond angle between two atoms is
.
(g)

Interpretation: The bond angle of the given molecule should be found.
Concept Introduction:
- Bond angle measured that made between two nearby bonds. The angles between two adjacent bonds are known as bond angle.
- Using VSEPR theory and Lewis structure, the exact geometry of a molecule can be obtained.
- In VSEPR, the geometry of the molecule is explained based on minimizing electrostatic repulsion between the molecules’ valence electrons around a central atom
- Lewis structures is also known as Lewis dot structures which represents the bonding between atoms of a molecule and the lone pairs of electrons that may exist in the molecule.
Answer to Problem 10.80QP
The bond angle of is
.
Explanation of Solution
To find: The bond angle of the given molecule
Given molecule is
.
Lewis structure of the given molecule is drawn below.
In the case of , both oxygen atom have any two lone pair of electrons and is a
with two lone pair of electron type molecule.. Since there is two lone pair on each oxygen atom, to minimize the repulsion, they form a tetrahedral geometry. So the bond angle between two atoms is
.
(h)

Interpretation: The bond angle of the given molecule should be found.
Concept Introduction:
- Bond angle measured that made between two nearby bonds. The angles between two adjacent bonds are known as bond angle.
- Using VSEPR theory and Lewis structure, the exact geometry of a molecule can be obtained.
- In VSEPR, the geometry of the molecule is explained based on minimizing electrostatic repulsion between the molecules’ valence electrons around a central atom
- Lewis structures is also known as Lewis dot structures which represents the bonding between atoms of a molecule and the lone pairs of electrons that may exist in the molecule.
Answer to Problem 10.80QP
The bond angle of is
.
Explanation of Solution
To find: The bond angle of the given molecule
Given molecule is
.
Lewis structure of the given molecule is drawn below.
Contains five atoms. Here the central atom tin atom does not have any lone pair of electrons. It is a
type molecule. Since there is no lone pair on the central atom, to minimize the repulsion, they form a tetrahedral geometry. So the bond angle between two atoms is
.
Want to see more full solutions like this?
Chapter 10 Solutions
Chemistry
- Rank these according to stability. CH3 H3C CH3 1 CH3 H3C 1 most stable, 3 least stable O 1 most stable, 2 least stable 2 most stable, 1 least stable O2 most stable, 3 least stable O3 most stable, 2 least stable O3 most stable, 1 least stable CH3 2 CH3 CH3 H₂C CH3 3 CH3 CHarrow_forwardConsider this IR and NMR: INFRARED SPECTRUM TRANSMITTANCE 0.8- 0.6 0.4 0.2 3000 10 9 8 00 HSP-00-541 7 CO 6 2000 Wavenumber (cm-1) сл 5 ppm 4 M Which compound gave rise to these spectra? N 1000 1 0arrow_forwardConsider this reaction (molecular weights are under each compound): HC=CH + 2 HCI --> C2H4Cl 2 MW = 26 36.5 99 If 4.4 g of HC=CH are reacted with 110 mL of a 2.3 M HCI solution, and 6.0 g of product are actually produced, what is the percent yield?arrow_forward
- What is the name of the major product of this reaction? OH CH3 H₂SO4, heat 1-methylcyclohexene O2-methyl-1-cyclohexene O 3-mthylcyclohexene 1-methyl-2-cyclohexenearrow_forwardWe added a brown solution of Br2 to one of our products, and the brown color disappeared. This indicated that our product wasarrow_forwardRank the following according to reactivity toward nitration: a) benzene b) bromobenzene c) nitrobenzene d) phenol Od) greatest, c) least Od) greatest, b) least Od) greatest, a) least a) greatest, b) least a) greatest, c) least Oa) greatest, d) least Ob) greatest, a) least O b) greatest, c) least Ob) greatest, d) least O c) greatest, a) least O c) greatest, b) least O c) greatest, d) leastarrow_forward
- O-Nitrophenol was distilled over with the steam in our experiment while the other isomer did not. This is due to: O intramolecular hydrogen bonding in the ortho isomer O intermolecular hydrogen bonding in the the ortho isomer O the ortho isomer has a lower density O the ortho isomer has a lower molecular weightarrow_forwardK 44% Problem 68 of 15 Submit Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. :6: :: :CI: CI CI: :0:0 Select to Add Arrows Select to Add Arrows H H Cl CI: CI CI: Select to Add Arrows Select to Add Arrows H :CI: Alarrow_forwardI I H :0: Submit Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. 0:0 :0: CI ΑΙ :CI: :CI: :0: CI Select to Add Arrows Select to Add Arrows cl. :0: Cl © ハ CI:: CI H CO Select to Add Arrows Select to Add Arrows 10: AI ::arrow_forward
- Order the following compounds from slowest to fastest in a nucleophilic acyl substitution reaction. ii 요 OB D A E C OCE Darrow_forwardI need the most help figuring out how to find [I^-] mol/ L, [S2O8^2-] mol/L. 1st and 2nd Blank columns.arrow_forwardCan someone help me whats the issue?arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





