
Estimate the temperature range over which each of the following reactions is spontaneous.
(a)
(b)
(c)
(d)

Interpretation:
The temperature range over which the reaction
Concept introduction:
A process which happens without any outward intervention is recognized as the spontaneous process. As per the 2nd law of thermodynamics, that states the universe’s entropy rises for any spontaneous process.
A process which happens when pressure and temperature both are constant, the determination of spontaneity can be done using Gibbs free energy:
Here, a sign of
Answer to Problem 10.61PAE
Solution:
The reaction will be spontaneous for temperature higher than 647 K.
Explanation of Solution
In the given reaction due to the presence of more number of moles of gas in the product, the change in entropy is estimated as positive, and due to the presence of more number of bonds in the product compared to the reactant, the enthalpy is also positive because in products bonds are formed more than the reactants.
First, calculate the change in enthalpy by subtracting all of the product enthalpies from the reactant enthalpies:
In next step, find the change in entropy after subtracting all the product entropies from the reactant entropies:
In the final step, using Gibbs free energy form the first section to find the temperature of spontaneity. Spontaneous reactions occur when the change in Gibb’s free energy is less than zero which means that energy is released from the system.
To find out the range of the temperature which can cause the negative change in
This temperature is the cutoff for temperatures for spontaneity. All temperatures higher than this temperature will result in spontaneous reaction because of the larger contribution from entropy which has a positive sign. Therefore, the reaction will be spontaneous for temperature higher than

Interpretation:
The temperature range over which the reaction
Concept introduction:
A process which happens without any outward intervention is recognized as the spontaneous process. As per the 2nd law of thermodynamics, that states the universe’s entropy rises for any spontaneous process.
A process which happens when pressure and temperature both are constant, the determination of spontaneity can be done using Gibbs free energy:
Here, a sign of
Answer to Problem 10.61PAE
Solution:
There are no temperatures that this reaction will be spontaneous.
Explanation of Solution
The first change in enthalpy will be calculated after subtracting product enthalpies from the reactant enthalpies.
In next step find the entropy change by subtracting product entropies from the reactant entropies.
In the final step using the expression for Gibb’s free energy from the first section to find the temperature of spontaneity. Spontaneous reactions occur when the change in Gibb’s free energy is less than zero, meaning that energy is released from the system
The reaction will be never being spontaneous because all temperatures are positive, meaning that

Interpretation:
The temperature range over which the reaction
Concept introduction:
A process which happens without any outward intervention is recognized as the spontaneous process. As per the 2nd law of thermodynamics, that states the universe’s entropy rises for any spontaneous process.
A process which happens when pressure and temperature both are constant, the determination of spontaneity can be done using Gibbs free energy:
Here, a sign of
Answer to Problem 10.61PAE
Solution:
The temperature must be greater than 201.20 K for the reaction to be spontaneous
Explanation of Solution
This reaction is the opposite of a formation reaction because a compound is split into its elemental states. The following equation is the balanced overall reaction:
According, the change in entropy for the formation of phosphine can be found in a table of common values:
Next, calculate the change in entropy by subtracting all the product entropies from the reactant entropies:
Plugging the values for the reactants and products as found in the table of common thermodynamic values. Multiply each product or reactant through its coefficient listed in the overall balanced reaction.
Then the standard Gibbs free energy of reaction is: -
For the reaction to be spontaneous,
So, the temperature must be greater than 201.20 K for the reaction to be spontaneous.
Want to see more full solutions like this?
Chapter 10 Solutions
EBK CHEMISTRY FOR ENGINEERING STUDENTS,
- in the scope of the SCH4U course! please show all steps as im still learning how to format my answers in the format given, thank you!arrow_forwardhelp me solve this HWarrow_forwardMolecules of the form AH2 can exist in two potential geometries: linear or bent. Construct molecular orbital diagrams for linear and bent CH2. Identify the relevant point group, include all of the appropriate symmetry labels and pictures, and fill in the electrons. Which geometry would you predict to be more stable, and why? (Please draw out the diagram and explain)arrow_forward
- Indicate the variation in conductivity with concentration in solutions of strong electrolytes and weak electrolytes.arrow_forwardThe molar conductivity of a very dilute solution of NaCl has been determined. If it is diluted to one-fourth of the initial concentration, qualitatively explain how the molar conductivity of the new solution will compare with the first.arrow_forwardWhat does the phrase mean, if instead of 1 Faraday of electricity, Q coulombs (Q/F Faradays) pass through?arrow_forward
- What characteristics should an interface that forms an electrode have?arrow_forwardFor a weak acid AcH, calculate the dissociated fraction (alpha), if its concentration is 1.540 mol L-1 and the concentration [H+] is 5.01x10-4 mol L-1.arrow_forwardIf the molar conductivity at infinite dilution of HAC is A0 = 390.5 S cm² mol¹. Calculate the Arrhenius conductivity of a 9.3% by weight solution of HAc with a pH of 3.3. Data: molecular weight of HAC is 60.05 g/mol and the density of the solution is 1 g/cm³.arrow_forward
- If the molar conductivity at infinite dilution of HAC is A0 = 390.5 S cm² mol¹. Calculate the Arrhenius conductivity of a 9.3% by weight solution of HAc with a pH of 3.3. Data: molecular weight of HAC is 60.05 g/mol and the density of the solution is 1 g/cm³.arrow_forwardIf the molar conductivity at infinite dilution of HAC is A0 = 390.5 S cm² mol¹. Calculate the Arrhenius conductivity of a 9.3% by weight solution of HAc with a pH of 3.3. Data: molecular weight of HAC is 60.05 g/mol and the density of the solution is 1 g/cm³.arrow_forwardDetermine the distance between the metal and the OHP layer using the Helm- holtz model when the electrode's differential capacitance is 145 μF cm². DATA: dielectric constant of the medium for the interfacial zone &r= lectric constant of the vacuum &0 = 8.85-10-12 F m-1 = 50, die-arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





