Interpretation:
Estimation of the fugacity for methane/ethane/propane in a mixture. Also estimate fugaciy coefficient for gases in the mixture.
Concept introduction:
The calculation of fugacity and fugacity coefficient of gases in the gas mixture is possible by using different correlation given as follows:
The fugacity coefficient for gas can be calculated by the equation given in the book as follows:
Where,
T = temperature
Where,
Similarly,
The fugacity of gases can be calculated by the definition of fugacity coefficient that is fugacity coefficient is the ratio of fugacity and pressure.
Answer to Problem 10.27P
Fugacity and fugacity coefficient of methane are 7.4896 bar and 1.019, respectively.
Fugacity and fugacity coefficient of ethane are 13.259 bar and 0.881, respectively.
Fugacity and fugacity coefficient of propane are 9.765 bar and 0.775, respectively.
Explanation of Solution
Refer APPENDIX-B and Table-B.1 to determine critical properties and acentric factor of ethylene(1)/Propylene (2) as:
Component | Pc (bar) | Tc (K) | Vc (cm3/mol) |
|
Zc |
Methane (1) | 45.99 | 190.6 | 98.6 | 0.012 | 0.286 |
Ethane (2) | 48.72 | 305.3 | 145.5 | 0.100 | 0.279 |
Propane (3) | 42.48 | 369.8 | 200 | 0.152 | 0.276 |
Where,
Pc = critical pressure
Tc = critical temperature
Vc = critical volume
Zc = critical compressibility factor
From the properties derived above, we can calculate the reduced pressure and temperature as follows:
Pressure P = 35 bar (given in question) and Temperature (T) = 1000C or 373.15K (given)
Y1= 0.21 ; y2 = 0.43 (given)
So,
Reduced temperature of gases can be calculated as:
Similar to the above calculated matrix we will calculate the reduced temperature as follows:
Critical volume of both the gases in the mixture can be calculated as given below:
With the help of critical volume and critical temperature, critical pressure of gases in the mixture can be calculated as follows:
The reduced compressibility factor can be calculated as:
After putting all values in the critical pressure formula, we will get:
At this calculated value of reduced temperature, we can calculate correlation constant as:
Overall correlation constant value in gas mixture can be calculated by equation:
Using above calculated values fugacity coefficient of gases calculated as given below:
Similarly, we can calculate fugacity coefficient for second species ethane and for third one propane as:
Now finally we can estimate the fugacity of all gases by just multiplying P with derived fugacity coefficient values:
Therefore fugacity of methane is 7.4896 bars, fugacity of ethane is 13.259 bar and fugacity of propane is 9.765 bar in the gas mixture.
Want to see more full solutions like this?
Chapter 10 Solutions
Loose Leaf For Introduction To Chemical Engineering Thermodynamics
- Q2/ An adsorption study is set up in laboratory by adding a known amount of activated carbon to six which contain 200 mL of an industrial waste. An additional flask containing 200 mL of waste but no c is run as a blank. Plot the Langmuir isotherm and determine the values of the constants. Flask No. Mass of C (mg) Volume in Final COD Flask (mL) (mg C/L) 1 804 200 4.7 2 668 200 7.0 3 512 200 9.31 4 393 200 16.6 C 5 313 200 32.5 6 238 200 62.8 7 0 200 250arrow_forwardمشر on ۲/۱ Two rods (fins) having same dimensions, one made of brass(k=85 m K) and the other of copper (k = 375 W/m K), having one of their ends inserted into a furnace. At a section 10.5 cm a way from the furnace, the temperature brass rod 120°C. Find the distance at which the same temperature would be reached in the copper rod ? both ends are exposed to the same environment. 22.05 ofthearrow_forward4.59 Using the unilateral z-transform, solve the following difference equations with the given initial conditions. (a) y[n]-3y[n-1] = x[n], with x[n] = 4u[n], y[− 1] = 1 (b) y[n]-5y[n-1]+6y[n-2]= x[n], with x[n] = u[n], y[-1] = 3, y[-2]= 2 Ans. (a) y[n] = -2+9(3)", n ≥ -1 (b) y[n]=+8(2)" - (3)", n ≥ -2arrow_forward
- (30) 6. In a process design, the following process streams must be cooled or heated: Stream No mCp Temperature In Temperature Out °C °C kW/°C 1 5 350 270 2 9 270 120 3 3 100 320 4 5 120 288 Use the MUMNE algorithm for heat exchanger networks with a minimum approach temperature of 20°C. (5) a. Determine the temperature interval diagram. (3) (2) (10) (10) b. Determine the cascade diagram, the pinch temperatures, and the minimum hot and cold utilities. c. Determine the minimum number of heat exchangers above and below the pinch. d. Determine a valid heat exchange network above the pinch. e. Determine a valid heat exchange network below the pinch.arrow_forwardUse this equation to solve it.arrow_forwardQ1: Consider the following transfer function G(s) 5e-s 15s +1 1. What is the study state gain 2. What is the time constant 3. What is the value of the output at the end if the input is a unit step 4. What is the output value if the input is an impulse function with amplitude equals to 3, at t=7 5. When the output will be 3.5 if the input is a unit steparrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The