
Theory and Design for Mechanical Measurements
6th Edition
ISBN: 9781119126317
Author: Richard S. Figliola; Donald E. Beasley
Publisher: Wiley Global Education US
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
Chapter 10, Problem 10.1P
To determine
Mass flow rate
Expert Solution & Answer

Answer to Problem 10.1P
Mass flow rate
Explanation of Solution
Given:
Air flow through a pipe
Velocity profile:
p = 1 bar abs = 100,000 N/m2abs
T = 5oC = 278 K
d1 = 2*r1 = 5 cm
Concept Used:
This for steady, incompressible, axis-symmetric flow becomes:
Mass flow rate through a pipe:
Calculation:
As per the given problem
For a perfect gas, the density obtained by the relation:
We know that, Mass flow rate through pipe:
Putting the value of density to calculate mass flow rate:
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
(Read image)
UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO
PRIMER EXAMEN PARCIAL DE MECÁNICA DE FLUIDOS I
............ Cusco, 23 de setiembre de 2024
AP. Y NOMBRES: ........
1.- Para el tanque de la figura:
a) Calcule la profundidad de la hidrolina si la profundidad del agua es de 2.8 m y el
medidor del fondo del tanque da una lectura de 52.3kPa.
b) Calcule la profundidad del agua si la profundidad de la hidrolina es 6.90 m y el medidor
de la parte inferior del tanque registra una lectura de 125.3 kPa.
Hidrolina
Sp=0.90
Abertura
Agua
sup suge to but amulor quit y
2.- Calcule la magnitud de la fuerza resultante sobre
el área A-B y la ubicación del centro de presión.
Señale la fuerza resultante sobre el área y
dimensione su ubicación con claridad.
3.5 ft
12 in:
Oil
(38-0.93)
14 in
8 in
please solve this problem and give me the correct answer step by step
Chapter 10 Solutions
Theory and Design for Mechanical Measurements
Ch. 10 - Prob. 10.1PCh. 10 - A 20-cm-i.d. pipe through which 10 °C air flows is...Ch. 10 - What is the best estimate of the pipe flow rate...Ch. 10 - A mercury-filled (S = 13.57) manometer is used in...Ch. 10 - A capacitance pressure transducer is used to...Ch. 10 - Estimate the expansion factor in measuring the...Ch. 10 - The Reynolds number of a fluid flowing through a...Ch. 10 - At what flow rate of 20 °C water through a 10-cm-...Ch. 10 - Water (25 °C) flows through a square-edged orifice...Ch. 10 - An orifice plate is installed to meter air flow in...
Ch. 10 - Determine the flow rate of 38 °C air through a...Ch. 10 - A square-edged orifice (p = 0.5) is used to meter...Ch. 10 - Size a suitable orifice plate to meter the steady...Ch. 10 - An in-line flow nozzle is to be used to measure...Ch. 10 - A cast venturi meter is to be used to meter the...Ch. 10 - For 120 ft3/m of 60 °F water flowing through a...Ch. 10 - Estimate the flow rate of water through a...Ch. 10 - A 2-in. (50.8 ram) diameter orifice plate is...Ch. 10 - In order to measure the flow rate ina2mx2mair...Ch. 10 - A flow nozzle is to be used at choked conditions...Ch. 10 - Compute the flow rate of 20 °C air through a 0.5-m...Ch. 10 - An ASME long radius nozzle (P = 0.5) is to be used...Ch. 10 - A square-edged orifice plate is selected to meter...Ch. 10 - Estimate the error contribution to the uncertainty...Ch. 10 - For Problem 10.24, suppose the air flow rate is 17...Ch. 10 - An application uses water flowing at up to...Ch. 10 - Dry air at a static pressure and temperature of...Ch. 10 - Dry air at a stagnation pressure and temperature...Ch. 10 - A sonic nozzle can be used to regulate flow rate...Ch. 10 - Select an appropriate range for a differential...Ch. 10 - From a vendor catalog or online site, select a...Ch. 10 - A vortex flow meter uses a shcdder having a...Ch. 10 - A thermal mass flow meter is used to meter 30 °C...Ch. 10 - Research available thermal mass flow meters...Ch. 10 - Fuel oil used in large sea vessels is known as...Ch. 10 - Estimate an uncertainty in the determined flow...Ch. 10 - A thermal mass flow meter is used to meter air in...Ch. 10 - A vortex meter is to use a shedder having a...Ch. 10 - An engineer has an application of water at 20 °C...Ch. 10 - The flow of air is measured to be 30 m3/min at 50...Ch. 10 - A 6 in. x 4 in. i.d. cast venturi is used to...Ch. 10 - A simple method to measure volume flow rate is to...Ch. 10 - In the problem 10.42, suppose volume can be...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- reaction at a is 1.6 wL (pos) handwritten solutions only please. correct answers upvotedarrow_forward1 8 4 Add numbers so that the sum of any row or column equals .30 Use only these numbers: .1.2.3.4.5.6.10.11.12.12.13.14.14arrow_forwardUppgift 2 (9p) I77777 20 kN 10 kN/m 4 [m] 2 2 Bestäm tvärkrafts- och momentdiagram för balken i figuren ovan. Extrempunkter ska anges med både läge och värde i diagrammen.arrow_forward
- **Problem 8-45.** The man has a mass of 60 kg and the crate has a mass of 100 kg. If the coefficient of static friction between his shoes and the ground is \( \mu_s = 0.4 \) and between the crate and the ground is \( \mu_c = 0.3 \), determine if the man is able to move the crate using the rope-and-pulley system shown. **Diagram Explanation:** The diagram illustrates a scenario where a man is attempting to pull a crate using a rope-and-pulley system. The setup is as follows: - **Crate (C):** Positioned on the ground with a rope attached. - **Rope:** Connects the crate to a pulley system and extends to the man. - **Pulley on Tree:** The rope runs over a pulley mounted on a tree which redirects the rope. - **Angles:** - The rope between the crate and tree forms a \(30^\circ\) angle with the horizontal. - The rope between the tree and the man makes a \(45^\circ\) angle with the horizontal. - **Man (A):** Pulling on the rope with the intention of moving the crate. This arrangement tests the…arrow_forwardplease solve this problems follow what the question are asking to do please show me step by steparrow_forwardplease first write the line action find the forces and them solve the problem step by steparrow_forward
- please solve this problem what the problem are asking to solve please explain step by step and give me the correct answerarrow_forwardplease help me to solve this problem step by steparrow_forwardplease help me to solve this problem and determine the stress for each point i like to be explained step by step with the correct answerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Hydronics Step by Step; Author: Taco Comfort Solutions;https://www.youtube.com/watch?v=-XGNl9kppR8;License: Standard Youtube License