![Elementary Surveying: An Introduction To Geomatics (15th Edition)](https://www.bartleby.com/isbn_cover_images/9780134604657/9780134604657_largeCoverImage.gif)
Concept explainers
In adjusting measured traverse angles‘ why aren’t adjustments made in proportion to the angle sizes?
![Check Mark](/static/check-mark.png)
The reason why the adjustments are not made in proportion to the angle sizes in adjusting measured traverse angles.
Answer to Problem 10.1P
Error is independent of angle size and depends on the method used for measurement.
Explanation of Solution
In elementary methods of traverse adjustment, the first step is to balance the angles to the proper geometric total. For a closed traverse angle balancing is easy since the total error is known. Angles of the closed traverse can be adjusted to the total geometry by any of the following methods:
- Applying an average correction to each angle of the traverse.
- Making larger corrections where the observations and measurements are not done properly.
In a closed traverse, if a single angle is not measured accurately then, error occurring due to one observation reflects in other observations. It is independent on the size of the angle and depends on the method used while measuring the angles. Therefore, adjustments are not made in proportion to the angle sizes in measured traverse angles.
Want to see more full solutions like this?
Chapter 10 Solutions
Elementary Surveying: An Introduction To Geomatics (15th Edition)
Additional Engineering Textbook Solutions
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
Concepts Of Programming Languages
Starting Out With Visual Basic (8th Edition)
Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Mechanics of Materials (10th Edition)
- = The allowable working load on a prestressed concrete pile 21-m long that has been driven 356 mm (see Table 9.3a). into sand is 502 kN. The pile is octagonal in shape with D Skin resistance carries 350 kN of the allowable load, and point bearing carries the rest. Use E, = 21 x 10° kN/m², E, = 25 x 103 kN/m², p, 0.35, and = 0.62. Determine the settlement of the pile. ==arrow_forwardH.W.5: A beam section is limited to a width of 300 mm, and total depth h=500 mm, and has to resist a factored moment 405 kN.m.Calculate the required reinforcement, given f'c=28 MPa, fy=420 MPa. (As=6425mm, As'=2425 mm Ans)arrow_forwardH.W.1: A rectangular beam has a width of 300 mm, and effective depth d=570 mm to centroid of tension steel bars. Tension steel reinforcement consist of 6628mm in two rows, compression reinforcement of 2022mm. Calculate the design moment strength of the beam, where f'c=28 MPa, fy=420 MPa. (Mu=822 kN.m Ans)arrow_forward
- H.W.4: A beam section is limited to a width of 250 mm, and total depth h=550 mm, and has to resist a factored moment 307 kN.m.Calculate the required reinforcement, given f'c=21 MPa, fy=350 MPa, d'=65mm. (As=5425mm, As'=2022 mm Ans) HW5 A beam section is limited to a width of 300 mm and total denth h-500 mm and has to resistarrow_forwardH.W.3: A rectangular beam has a width of 400 mm, and effective depth d=700 mm to centroid of tension steel bars. Tension steel reinforcement consist of 4036mm in two rows, compression reinforcement of 2622mm. Calculate the design moment strength of the beam, where f'c=21 MPa, fy=420 MPa, d'=65mm. (Mu=927 kN.m Ans)arrow_forwardH.W.4: A beam section is limited to a width of 250 mm, and total depth h=550 mm, and has to resist a factored moment 307 kN.m.Calculate the required reinforcement, given f'c=21 MPa, fy=350 MPa, d'=65mm. (As=5425mm, As'=2422 mm Ans)arrow_forward
- H.W.6: Design the steel reinforcement for flexural for the beam shown in the fig. below. Given f'c=28 MPa, fy=420 MPa. D.L 100 kN/m L.L=200 kN 3 m 3 m 600 mm- A =? 300 mm.arrow_forwardThe tension member shown in the figure below must resist a service dead load of 60 kips and a service live load of 45 kips. Does the member have enough strength? The steel is A588: Fy = 50 ksi, F₁ = 70 ksi; and the bolts are 11/8 inches in diameter. Assume that A = An PL 38 x 72 оо a. Use LRFD. Determine the design strength and the factored load. Make a conclusion about the member. (Express your answers to three significant figures.) +Pn Pu = = kips kips -Select- b. Use ASD. Determine the allowable strength and required strength. Make a conclusion about the member. (Express your answers to three significant figures.) Ft Ae = P₁ = -Select- kips kipsarrow_forwardA single-angle tension member of A36 steel must resist a dead load of 49 kips and a live load of 84 kips. The length of the member is 18 feet, and it will be connected with a single line of 1-inch-diameter bolts, as shown in the figure below. There will be four or more bolts in this line. For the steel Fy = 36 ksi and F₁ = 58 ksi. Try the tension members given in the table below. Tension member 4, (in.) rz (in.) 7 L6 × 6 × 9.75 1.17 8 L 5 × 3 × 4.93 0.746 L 5 × 3 × 5 2.56 0.758 16 7 L5 × 3 × 3.31 0.644 16 Bolt line a. Select a single-angle tension member to resist the loads. Use LRFD. A) L 6 × 6 × B) L 5 × 3 × CL5×3× D) L 5 × 3 × -Select- 5 16 7 16 What is the required gross area? (Express your answer to three significant figures.) A₁ = in.² What is the required effective area? (Express your answer to three significant figures.) A = in.2 What is the minimum radius of gyration? (Express your answer to three significant figures.) "min = in. b. Select a single-angle tension member to…arrow_forward
- An L6 × 4 × 5/8 tension member of A36 steel is connected to a gusset plate with 1-inch-diameter bolts, as shown in the figure below. It is subjected to the following service loads: dead load = 40 kips, live load = 100 kips, and wind load = 45 kips. Use the equation for U: U = 1 − For A36 steel: Fy = 36 ksi, F = 58 ksi. x l For L6 × 4×5/8: Ag = 5.86 in.², x = 1.03 in. 21/4" L6 × 4 × 5/8 11/2" 21/2" 11/2" a. Determine whether this member is adequate using LRFD. -Select- What is the design strength for LFRD? (Express your answer to three significant figures.) Φι Ρη - = kips Which AISC load combination controls? -Select- What is the controlling AISC load combination? (Express your answer to three significant figures.) Pu = kips b. Determine whether this member is adequate using ASD. -Select- What is the allowable strength for ASD? (Express your answer to three significant figures.) Pn Sit kips Which ASD load combination controls? -Select- What is the controlling ASD load combination?…arrow_forwardA double-angle shape, 2L7 × 4 × 5/8, is used as a tension member. The two angles are connected to a gusset plate with 7/8-inch-diameter bolts through the 7-inch legs, as shown in the figure below. A572 Grade 50 steel is used: Fy Fu = 65 ksi. Suppose that t = 5/8 in. = 50 ksi, For L7 x 4 x 5/8: Ag = 6.5 in.², x = 0.958 in. 21/2" оо 11/2" 2L7 x 4 x t a. Compute the design strength. (Express your answer to three significant figures.) ФЕРП = kips b. Compute the allowable strength. (Express your answer to three significant figures.) 'n Sit = kipsarrow_forwardI really need help on barrow_forward
- Architectural Drafting and Design (MindTap Course...Civil EngineeringISBN:9781285165738Author:Alan Jefferis, David A. Madsen, David P. MadsenPublisher:Cengage LearningTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage LearningEngineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage Learning
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage LearningConstruction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage LearningResidential Construction Academy: House Wiring (M...Civil EngineeringISBN:9781285852225Author:Gregory W FletcherPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285165738/9781285165738_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305156241/9781305156241_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305084766/9781305084766_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781111988609/9781111988609_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305086272/9781305086272_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285852225/9781285852225_smallCoverImage.gif)