Concept explainers
Hurricane Irma (2017) had a central pressure of 914 mbar, the lowest recorded for an Atlantic hurricane. Calculate the pressure in units of mm Hg.
Interpretation:
The pressure of
Concept introduction:
Atmospheric pressure is defined as average pressure that is exerted at the sea level. This is equivalent to exactly equivalent to
The relation between
The conversion factor to convert
The conversion factor to convert
Answer to Problem 10.1P
The pressure is
Explanation of Solution
Given information:
Central pressure is given as
The conversion factor to convert
Therefore
The conversion factor to convert
Therefore
The conversion factor for conversion of
Therefore
Want to see more full solutions like this?
Chapter 10 Solutions
CHEMISTRY-MASTERINGCHEMISTRY W/ETEXT
- A mixture contained calcium carbonate, CaCO3, and magnesium carbonate, MgCO3. A sample of this mixture weighing 7.85 g was reacted with excess hydrochloric acid. The reactions are CaCO3(g)+2HCL(aq)CaCl2(aq)+H2O(I)+CO2(g)MgCO3(s)+2HCL(aq)MgCl2(aq)+H2O(I)+CO2(g) If the sample reacted completely and produced 1.94 L of carbon dioxide, CO2, at 25C and 785 mmHg, what were the percentages of CaCO3 and MgCO3 in the mixture?arrow_forwardPyruvic acid, HC3H3O3, is involved in cell metabolism. It can be assayed for (that is, the amount of it determined) by using a yeast enzyme. The enzyme makes the following reaction go to completion: HC3H3O3(aq)C2H4O(aq)+CO2(g) If a sample containing pyruvic acid gives 21.2 mL of carbon dioxide gas, CO2, at 349 mmHg and 30C, how many grams of pyruvic acid are there in the sample?arrow_forwardAmmonia gas is synthesized by combining hydrogen and nitrogen: 3 H2(g) + N2(g) 2 NH3(g) (a) If you want to produce 562 g of NH3, what volume of H2 gas, at 56 C and 745 mm Hg, is required? (b) Nitrogen for this reaction will be obtained from air. What volume of air, measured at 29 C and 745 mm Hg pressure, will be required to provide the nitrogen needed to produce 562 g of NH3? Assume the sample of air contains 78.1 mole % N2.arrow_forward
- A chemist weighed out 5.14 g of a mixture containing unknown amounts of BaO(s) and CaO(s) and placed the sample in a 1.50-L flask containing CO2(g) at 30.0C and 750. torr. After the reaction to form BaCO3(s) and CaCO3(s) was completed, the pressure of CO2(g) remaining was 230. torr. Calculate the mass percentages of CaO(s) and BaO(s) in the mixture.arrow_forwardIf the rms speed of He atoms in the exosphere (highest region of the atmosphere) is 3.53 103 m/s, what is the temperature (in kelvins)?arrow_forwardA student reads a barometer in the laboratory and finds the atmospheric pressure to be 793.6 mmHg. Express this pressure in atmospheres (do not include the units). Assume that the conversion is exact.arrow_forward
- 1) 2 C8H18(l) + 25 O2(g) → 16 CO2(g) + 18 H2O(g) Calculate the volume of carbon dioxide produced when 1.0805 g of octane, C8H18(l), combusts at STP. The molar mass of C8H18 is 114.26 g/mol. Express your answer with the appropriate significant figures and unit. a) 1.69 L CO2(g) b) 1.695 L CO2(g) c) 18,900 L CO2(g) d) 3.33 g CO2(g) e) 3.33 L CO2(g)arrow_forwardA student completes the experiment The Universal Gas Constant and obtains the following data for one trial. mass of magnesium (g): Initial gas volume (ml): Final gas volume (ml): Temperature (°C): Atmospheric pressure (inHg): 30.39 Calculate the universal gas constant, R, for this trial. Assume that the water levels inside and outside the eudiometer tube are the same; that is, assume Ah = 0.00 cm water. Give your answer to two decimal places in the units of L-torr-mol-1. K-¹. 1 in Hg = 25.4 mmHg 1 cm water = 0.735559 mmHg 1 mol Mg = 24.305 g Mg on i TABLE D-4 TEMP DEGA C T 0 1 2 3 4 amm 14.579 4.612 4.646 | 4.660 4.714 4.924 4.959 4.9955.031 15.068 5.291 5.329 5.367 5.406 15.445 15.683 5.723 | 5.7645.805 5.146 16.100 1 6.143 6.1866.2306-274 1 6.318 10.6 I 0.7 J L 1 LI 1 4.7484.783 4.818 1 4.853 I 4.888 1 5.104 | 5.141 | 5.178 5.216 | 5.253 5.484 5.523 5.563 1 5.60215.647 I 5.888 | 5.930 | 5.972 1 6.014 1.6. 7_1 5.363 | 6.407 6.453 I 6.498 1 6.823 | 6. 871 6.919 1 6.967 1 1 | 6.544 |…arrow_forwardA chemist weighed out 5.14 gm of a mixture containing unknown amounts of BaO (s) and CaO(s) and placed the sample in a 1.50 liter flask containing CO2(g) at 30.0°C and 750 torr. After the reaction to form BaCO3(s) and CACO3(s) was completed, the pressure of CO2(g) remaining was 230 torr. Calculate the mass percentages of CaO(s) and BaO(s) in the sample.arrow_forward
- One of the oldest units for atmospheric pressure is Ib in.2 (pounds per square inch, or psi). Calculate the numerical value of the standard atmosphere in these units to three significant figures. Calculate the mass in pounds of a uniform column of water 69.4 ft high having an area of 1.00 in² at its base. (Use the following data: density of mercury = 13.6 g mL-1; density of water = 1.00 g mL-1: 1 mL = 1 cm3; I lb = 454 g; 1 in. = 2.54 cm.) mass of the water column = i Ib/in?arrow_forwardA student collected 500. mL of nitrogen at a temperature of 20.°C. The next day the student found that the volume had changed to 525 mL. What was the new temperature of the gas?arrow_forwardTime Left:0:55:00 A student completes the experiment The Universal Gas Constant and obtains the following data for one trial. mass of magnesium (g): Initial gas volume (ml): Final Volume (mL): Temperature (°C): Atmospheric pressure (inHg): Ah (cm of water): F3 80 모 Calculate the partial pressure of hydrogen, PH2, for this trial. Give your answer in torr (mmHg). 1 in Hg = 25.4 mmHg 1 cm water = 0.735559 mmHg 1 mol Mg = 24.305 g Mg TABLE D-4 TEMP 1_DEG₁_C_1 1 3 I 1 1 Q F4 0 1 = 2 3 4 5 6 7 8 10 11 12 13 14 0.0 0.1 0.0326 0.00 35.30 21.3 30.21 16 17.13 F5 6.100 | 6.143 1 6.544 1 6.589 0.2 1 VAPOR PRESSURE OF HATER 0-30 DEG. C IN MM HG 1 4.579 4.612 4.646 | 4.924 | 4.959 4.995 15.291 4.660 4.714 5.0315.068 5.329 5.367 5.406 5.445 4.7484.783 4.818 5.104 | 5.141 | 5.178 5.484 5.523 5.563 5.888 5.930 6.230 16.274 6.318 5.363 15.683 15.723 | 5.764 | 5.8051 5.146 6.186 6.636 5.972 1 6.0141 6.057 1 6.407 1 6.453 6.498 1 6.82 | 6.729 6.776 6.823 | 6.871 | 6.919 | 6.967 1 T T 1 I T I 1 17.0167,064…arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning