![General, Organic, and Biochemistry](https://www.bartleby.com/isbn_cover_images/9781260506198/9781260506198_largeCoverImage.gif)
Concept explainers
(a)
Interpretation:
The compounds
Concept Introduction:
The force of attraction between two molecules that experience a short-lived dipole is known as London Dispersion force. Large molecules will have large number of electrons. These electrons when in constant motion develop a temporary dipole. The formed temporary dipole interacts with other temporary dipoles resulting in an attractive force between the molecules. Molecules with a very high molar mass have large number of electrons. This result in having stronger force of attraction and due to this the melting point and boiling point of the molecule will be higher.
Example:
Ionic substances contain ions. Covalent substances have covalent bonds that are formed by mutual sharing of electrons. Ionic substances are made of up of many positive and negative ions that constitute a three-dimensional crystal. Due to this three-dimensional crystal, ionic substances have higher melting and boiling points than covalent substances.
(b)
Interpretation:
The compounds
Concept Introduction:
Refer part (a).
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 10 Solutions
General, Organic, and Biochemistry
- Write the calculate the reaction quotient for the following system, if the partial pressure of all reactantsand products is 0.15 atm: NOCl (g) ⇌ NO (g) + Cl2 (g) H = 20.5 kcalarrow_forwardComplete the spectroscopy with structurearrow_forwardcould you answer the questions and draw the complete mechanismarrow_forward
- Complete the spectroscopy with structurearrow_forwardCalculate the reaction quotient for the reaction:NaOH (s) ⇌ Na+ (aq)+ OH- (aq) + 44.4 kJ [Na+] = 4.22 M [OH-] = 6.41 Marrow_forwardGiven the following concentrations for a system, calculate the value for the reaction quotient: Cl2(g)+ CS2(g) ⇌ CCl4(g)+ S2Cl2(g) Cl2 = 31.1 atm CS2 = 91.2 atm CCl4 = 2.12 atm S2Cl2 = 10.4 atmarrow_forward
- Match each chemical or item with the proper disposal or cleanup mwthod, Not all disposal and cleanup methods will be labeled. Metal sheets C, calcium, choroide solutions part A, damp metal pieces Part B, volumetric flask part A. a.Return to correct lables”drying out breaker. Place used items in the drawer.: Rinse with deionized water, dry as best you can, return to instructor. Return used material to the instructor.: Pour down the sink with planty of running water.: f.Pour into aqueous waste container. g.Places used items in garbage.arrow_forwardWrite the equilibrium constant expression for the following reaction: HNO2(aq) + H2O(l) ⇌ H3O+(aq) + NO2-(aq)arrow_forwardWrite the reaction quotient for: Pb2+(aq) + 2 Cl- (aq) ⇌ PbCl2(s)arrow_forward
- Write the equilibrium constant expression for the following system at equilibrium: I2 (g) ⇌ 2 I (g)arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forwardWe learned four factors (ARIO) for comparing the relative acidity of compounds. When two of these factors are in competition, the order of priority is the order in which these factors were covered ("atom" being the most important factor and "orbital" being the least important). However, we also mentioned that there are exceptions to this order of priority. Compare the two compounds and identify the exception. OH PK-4.75 SH PK-10.6 5. "Resonance" is more important than "atom" because the conjugate base of first compound is more stable than the second. "Atom" is more important than "resonance" because the conjugate base of first compound is more stable than the second. "Resonance" is more important than "atom" because the conjugate base of second compound is more stable than the first. "Atom" is more important than "resonance" because the conjugate base of second compound is more stable than the first.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)