Both glucose and fructose arc simple sugars with the same molecular formula of C6H12O6. Sucrose (C121122O11), or table sugar, consists of a glucose molecule bonded to a fructose molecule (a water molecule is eliminated in the formation of sucrose), (a) Calculate the energy released when a 2.0-g glucose tablet is burned in air. (b) To what height can a 65-kg person climb after ingesting such a tablet, assuming only 30% of the energy released is available for work. (See the hint for Problem 10.127.) Repeat the calculations for a 2.0-g sucrose tablet.
(a)
Interpretation:
The energy changes in 2.0 g of Glucose and Sucrose tablet has to be calculated and the height the person can climb after ingesting the tablet has to be calculated.
Concept Introduction:
Heat is flow of thermal energy involving two bodies at various temperatures. The flow of thermal energy involving two bodies at various temperatures is called as heat. The flow of heat implies that energy is either released or absorbed on describing about energy changes that takes place during a process.
Exothermic process is the chemical process in which heat is released to the surroundings.
Endothermic process is the chemical process in which heat is absorbed from the surroundings.
The change in enthalpy that is associated with the formation of one mole of a substance from its related elements being in standard state is called standard enthalpy of formation (
The standard enthalpy of reaction is the enthalpy of reaction that takes place under standard conditions.
To calculate: The energy changes for 2 grams of Glucose and Sucrose
Answer to Problem 10.137QP
The heat change for Glucose is
The heat change for Sucrose is
Explanation of Solution
Weight of Glucose =
Molar mass of Glucose =
Heat of combustion of Glucose =
Moles of Glucose =
=
Moles of Sucrose =
Moles of Glucose =
Moles of Sucrose =
To calculate the energy changes for 2 grams of Glucose and Sucrose
Energy change in Glucose =
=
Energy change in Sucrose =
=
Energy change in Glucose =
Energy change in Sucrose =
The energy changes for 2 grams of Glucose and Sucrose were calculated using the values the moles and heat of combustions of Glucose and Sucrose. The energy changes for 2 grams of Glucose and Sucrose were found to be
(b)
Concept Introduction:
The energy possessed by an object due to its relative point to some other object, stress surrounded by itself, its electric charge or any other external factor is called as potential energy.
Potential energy can be calculated using the formula,
Answer to Problem 10.137QP
Height climbed by the person on ingesting Glucose is 15 m.
Height climbed by the person on ingesting Sucrose is 16 m.
Explanation of Solution
To calculate the heat in Joules
Heat of Sucrose = 9.9×103 J
Heat of Glucose = 9.3×103 J
To calculate the height climbed
Height climbed by the person on ingesting Glucose =15 m.
Height climbed by the person on ingesting Sucrose =16 m.
Heights climbed by the person on ingesting Glucose and Sucrose were calculated using the values of mass, acceleration due to gravity and heat. The heights climbed by the person on ingesting Glucose and Sucrose were found to be 15 m and16 m.
Want to see more full solutions like this?
Chapter 10 Solutions
Chemistry: Atoms First V1
- Liquid hydrogen peroxide has been used as a propellant for rockets. Hydrogen peroxide decomposes into oxygen and water, giving off heat energy equal to 686 Btu per pound of propellant. What is this energy in joules per gram of hydrogen peroxide? (1 Btu = 252 cal; see also Table 1.4.)arrow_forwardCompounds with carboncarbon double bonds, such as ethylene, C2H4, add hydrogen in a reaction called hydrogenation. C2H4(g)+H2(g)C2H6(g) Calculate the enthalpy change for this reaction, using the following combustion data: C2H4(g)+3O2(g)2CO2(g)+2H2O(l);H=1411kJC2H6(g)+72O2(g)2CO2(g)+3H2O(l);H=1560kJH2(g)+12O2(g)H2O(l);H=286kJarrow_forwardHow fast (in meters per second) must an iron ball with a mass of 56.6 g be traveling in order to have a kinetic energy of 15.75 J?arrow_forward
- Niagara Falls has a height of 167 ft (American Falls). What is the potential energy in joules of 1.00 lb of water at the top of the falls if we take water at the bottom to have a potential energy of zero? What would be the speed of this water at the bottom of the falls if we neglect friction during the descent of the water?arrow_forwardThe enthalpy change for the following reaction is 393.5 kJ. C(s,graphite)+O2(g)CO2(g) (a) Is energy released from or absorbed by the system in this reaction? (b) What quantities of reactants and products are assumed? (c) Predict the enthalpy change observed when 3.00 g carbon burns in an excess of oxygen.arrow_forwardThe equation for the fermentation of glucose to alcohol and carbon dioxide is: C6H12O6(aq) 2C2H5OH(aq) + 2CO2(g) The enthalpy change for the reaction is 67 kJ. Is this reaction exothermic or endothermic? Is energy, in the form of heat, absorbed or evolved as the reaction occurs?arrow_forward
- Chlorine dioxide, ClO2, is a reddish yellow gas used in bleaching paper pulp. The average speed of a ClO2 molecule at 25C is 306 m/s. What is the kinetic energy (in joules) of a ClO2 molecule moving at this speed?arrow_forwardHydrazine, N2H4, is a colorless liquid used as a rocket fuel. What is the enthalpy change for the process in which hydrazine is formed from its elements? N2(g)+2H2(g)N2H4(l) Use the following reactions and enthalpy changes: N2H4(l)+O2(g)N2(g)+2H2O(l);H=622.2kJH2(g)+12O2(g)H2O(l);H=285.8kJarrow_forwardWhat mass of acetylene, C2H2(g), must be burned to produce 3420 kJ of heat, given that its enthalpy of combustion is 1301 kJ/mol? Compare this with the answer to Exercise 5.91 and determine which substance produces more heat per gram.arrow_forward
- Hydrogen, H2, is prepared by steam reforming, in which hydrocarbons are reacted with steam. For CH4, CH4(g)+H2O(g)CO(g)+3H2(g) Calculate the enthalpy change H for this reaction, using standard enthalpies of formation.arrow_forward9.41 Under what conditions does the enthalpy change equal the heat of a process?arrow_forwardWhich of the enthalpies of combustion in Table 5.2 the table are also standard enthalpies of formation?arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning