Both glucose and fructose arc simple sugars with the same molecular formula of C6H12O6. Sucrose (C121122O11), or table sugar, consists of a glucose molecule bonded to a fructose molecule (a water molecule is eliminated in the formation of sucrose), (a) Calculate the energy released when a 2.0-g glucose tablet is burned in air. (b) To what height can a 65-kg person climb after ingesting such a tablet, assuming only 30% of the energy released is available for work. (See the hint for Problem 10.127.) Repeat the calculations for a 2.0-g sucrose tablet.
(a)
![Check Mark](/static/check-mark.png)
Interpretation:
The energy changes in 2.0 g of Glucose and Sucrose tablet has to be calculated and the height the person can climb after ingesting the tablet has to be calculated.
Concept Introduction:
Heat is flow of thermal energy involving two bodies at various temperatures. The flow of thermal energy involving two bodies at various temperatures is called as heat. The flow of heat implies that energy is either released or absorbed on describing about energy changes that takes place during a process.
Exothermic process is the chemical process in which heat is released to the surroundings.
Endothermic process is the chemical process in which heat is absorbed from the surroundings.
The change in enthalpy that is associated with the formation of one mole of a substance from its related elements being in standard state is called standard enthalpy of formation (
The standard enthalpy of reaction is the enthalpy of reaction that takes place under standard conditions.
To calculate: The energy changes for 2 grams of Glucose and Sucrose
Answer to Problem 10.137QP
The heat change for Glucose is
The heat change for Sucrose is
Explanation of Solution
Weight of Glucose =
Molar mass of Glucose =
Heat of combustion of Glucose =
Moles of Glucose =
=
Moles of Sucrose =
Moles of Glucose =
Moles of Sucrose =
To calculate the energy changes for 2 grams of Glucose and Sucrose
Energy change in Glucose =
=
Energy change in Sucrose =
=
Energy change in Glucose =
Energy change in Sucrose =
The energy changes for 2 grams of Glucose and Sucrose were calculated using the values the moles and heat of combustions of Glucose and Sucrose. The energy changes for 2 grams of Glucose and Sucrose were found to be
(b)
![Check Mark](/static/check-mark.png)
Concept Introduction:
The energy possessed by an object due to its relative point to some other object, stress surrounded by itself, its electric charge or any other external factor is called as potential energy.
Potential energy can be calculated using the formula,
Answer to Problem 10.137QP
Height climbed by the person on ingesting Glucose is 15 m.
Height climbed by the person on ingesting Sucrose is 16 m.
Explanation of Solution
To calculate the heat in Joules
Heat of Sucrose = 9.9×103 J
Heat of Glucose = 9.3×103 J
To calculate the height climbed
Height climbed by the person on ingesting Glucose =15 m.
Height climbed by the person on ingesting Sucrose =16 m.
Heights climbed by the person on ingesting Glucose and Sucrose were calculated using the values of mass, acceleration due to gravity and heat. The heights climbed by the person on ingesting Glucose and Sucrose were found to be 15 m and16 m.
Want to see more full solutions like this?
Chapter 10 Solutions
CHEMISTRY: ATOMS FIRST VOL 1 W/CONNECT
- Problem 3-42 Consider 2-methylbutane (isopentane). Sighting along the C2-C3 bond: (a) Draw a Newman projection of the most stable conformation. (b) Draw a Newman projection of the least stable conformation. Problem 3-44 Construct a qualitative potential-energy diagram for rotation about the C-C bond of 1,2-dibromoethane. Which conformation would you expect to be most stable? Label the anti and gauche conformations of 1,2- dibromoethane. Problem 3-45 Which conformation of 1,2-dibromoethane (Problem 3-44) would you expect to have the largest dipole moment? The observed dipole moment of 1,2-dibromoethane is µ = 1.0 D. What does this tell you about the actual conformation of the molecule?arrow_forwardGas Law Studies 1. Mass of zinc Determination of 0.899 2) Moles of zinc 0.01361 mol 3.) Moles of hydrogen 00? ← I was told to calculate this number from mole of zinc. 350m So does that mean it will be 0.01361 mol too? 4 Volume of water collected (mL) 5) VL of water collected (Liters) 0.350 L 6) Temp of water collected (°C) 7) Temp of water collected (°K) 8) Atmospheric pressure (mm) 9) Vapor pressure of water (mm) 10) Corrected pressure of hydrogen 20% 29°C 764.0mm Hg (mm) 17.5mm 11) Corrected pressure of hydrogen (atm) 12) Experimentally calculated value of 19 13. Literature value of R 14) % Error 15) Suggest reasons for the % error (#14)arrow_forwardNo wedge or dashes. Do proper structure. Provide steps and explanation.arrow_forward
- 10 Question (1 point) Draw curved arrow notation to indicate the proton transfer between NaOH and CH3CO₂H. 2nd attempt :0- H See Periodic Table See Hint Draw the products of the proton transfer reaction. Don't add a + sign between the products.arrow_forwardProvide steps and explanation please.arrow_forwardProvide steps to name and label for understanding.arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580343/9781305580343_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337398909/9781337398909_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168390/9781938168390_smallCoverImage.gif)