Given that the order of molecular orbitals for NO is similar to that for O2, arrange the following species in increasing bond orders: NO2−, NO−, NO, NO+, NO2+.

Interpretation: The given species have to be arranged in the increasing order of their bond order.
Concept Introduction:
Bond order:
Bond order determines the number of bonds in the pair of two atoms. So, it is the quantitative measure of a bond.
The bond order can be calculated as follows:
Trends in the bond order:
The species with the negative charge means that electrons are getting added in the anti-bonding molecular orbital. So the number of electrons in the anti-bonding molecular orbital increases accordingly. Ultimately, the bond order decreases. Whereas, the species with the positive charge means that electrons are being removed from the anti-bonding molecular orbital. So the number of electrons in the anti-bonding molecular orbital decreases accordingly. Ultimately, the bond order increases.
Answer to Problem 10.124QP
The given species can be arranged in the increasing order of their bond order as follows:
Explanation of Solution
Given: The order of molecular orbitals of
The molecular orbitals of
The molecular orbital configuration of
Bond order of
The molecular orbitals of
The bond order of
Similarly, the bond orders can be calculated for each of the given species as follows:
Bond order of
The molecular orbitals of
The bond order of
Bond order of
The molecular orbitals of
The bond order of
Bond order of
The molecular orbitals of
The bond order of
Bond order of
The molecular orbitals of
The bond order of
The calculated bond orders can be tabulated as follows:
Given molecule | Bond order. |
1.5 | |
2 | |
2.5 | |
3 | |
2.5 |
Based on this tabulation, the given species can be arranged in the increasing order of their bond order as follows:
The given species have been arranged in the increasing order of their bond order.
Want to see more full solutions like this?
Chapter 10 Solutions
ALEKS 360; 18WKS F/ GEN. CHEMISTRY >I<
- Which of the following are descriptions of possible starting material for this reaction? H ? trace acid an ester a ketone an imine an aldehyde a carboxylic acid an enamine a primary amine a secondary amine a tertiary aminearrow_forwardNonearrow_forwardWhat are the reagents needed for this and the third structure I only got the top right structure rightarrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning





