Fundamentals of Aerodynamics
6th Edition
ISBN: 9781259129919
Author: John D. Anderson Jr.
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10, Problem 10.10P
A
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a low-speed subsonic wind tunnel with a closed test section, a static pressure tap on the wall of the tunnel test section measures 0.98 atm. The temperature of the air in the test section is 80 ˚F. A Pitot tube is inserted in the middle of the flow in the test section in order to measure the flow velocity. The pressure measured by the Pitot tube is 2,200 psf. Calculate the flow velocity (in KPH) in the test section.
Consider a low-speed subsonic wind tunnel designed with a reservoir cross-sectional area of 2 m2 and a test-section cross-sectional area of 0.5 m2. The pressure in the test section is 1 atm.
Consider a low-speed subsonic wind tunnel designed with a reservoir cross-sectional area of 2 m2 and a test-section cross-sectional area of 0.5 m2. The pressure in the test section is 1 atm. Assume constant density equal to standard sea level density, calculate the pressure (in Pa) required in the reservoir necessary to achieve a flow velocity of 40 m/s in the test section.
Chapter 10 Solutions
Fundamentals of Aerodynamics
Ch. 10 - The reservoir pressure and temperature for a...Ch. 10 - A flow is isentropically expanded to supersonic...Ch. 10 - A Pitot tube inserted at the exit of a supersonic...Ch. 10 - For the nozzle flow given in Problem 10.1, the...Ch. 10 - A closed-form expression for the mass flow through...Ch. 10 - Prob. 10.6PCh. 10 - A convergent-divergent nozzle with an...Ch. 10 - For the flow in Problem 10.7, calculate the mass...Ch. 10 - Consider a convergent-divergent nozzle with an...Ch. 10 - A 20 half-angle wedge is mounted at 0 angle of...
Ch. 10 - The nozzle of a supersonic wind tunnel has an...Ch. 10 - We wish to design a supersonic wind tunnel that...Ch. 10 - Consider a rocket engine burning hydrogen and...Ch. 10 - For supersonic and hypersonic wind tunnels, a...Ch. 10 - Return to Problem 9.18. where the average Mach...Ch. 10 - Return to Problem 9.19, where the average Mach...Ch. 10 - A horizontal flow initially at Mach I flows over a...Ch. 10 - Consider a centered expansion wave where M1=1.0...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Consider a circular cylinder in a hypersonic flow, with its axisperpendicular to the flow. Let φ be the angle measured between radiidrawn to the leading edge (the stagnation point) and to any arbitrary pointon the cylinder. The pressure coefficient distribution along the cylindricalsurface is given by Cp = 2 cos2 φ for 0 ≤ φ ≤ π/2 and 3π/2 ≤ φ ≤ 2πand Cp = 0 for π/2 ≤ φ ≤ 3π/2. Calculate the drag coefficient for thecylinder, based on projected frontal area of the cylinder.arrow_forwardWhat are the dissimilarities between an inlet and a nozzle? List the basic geometries of diffuser, 【简答题) What are the outcomes if a normal shock is present at the throat of a supersonic inlet?arrow_forwardAir discharges isentropically on a supersonic wind tunnel which is designed to achieve supersonic flow on the test section. It can be done by choking the air at the throat of a converging-diverging nozzle, wherein at the throat, the local speed is equal to the speed of sound. At the reservoir, the pressure and temperature are 500 kilopascals and 882 Kelvin, respectively. If the flow rate along the nozzle is constant at 170.1 kg/s, compute for the area at the throat.arrow_forward
- Consider a wing mounted in the test-section of a subsonic wind tunnel. The velocity of the airflow is 160 ft/s. If the velocity at a point on the wing is 195 ft/s, what is the pressure coefficient at this point?arrow_forwardConsider a convergent-divergent duct with exit and throat areas of 0.5 m^2 and 0.25 m^2, respectively. The inlet reservoir pressure is 1 atm and the exit static pressure is 0.6 atm. For this pressure ratio, the flow will be supersonic in a portion of the nozzle, terminating with a normal shock inside the nozzle. Calculate the local area ratio (A/A*) at which the shock is located inside the nozzle.arrow_forwardThe mass flow of air through a supersonic nozzle is 1.5 lbm/s. The exit velocity is 1,500 ft/sec, and the reservoir temperature and pressure are 1,000 'R and 7 atm , respectively. Calculate the area of the nozzle exitarrow_forward
- The stagnation chamber of a wind tunnel is connected to a high pressure air bottle farm which is outside the laboratory building. The two are connected by a long pipe which has a inside diameter of 4 inches. If the static pressure ratio between the bottle farm and the stagnation chamber is 10 and the bottle farm static pressure is 100 atm, how long can the pipe be without choking and what is the change in entropy? Assume adiabatic,subsonic, one-dimensional flow with a friction coefficient of 0.005.arrow_forwardi need the answer quicklyarrow_forward3. Assume a supersonic flow with M=2, P=1 atm, and T=288 K that is deflected via 15° at a compression corner. Determine M, P, T, as well as PO and TO behind the associated oblique shock wave.arrow_forward
- Good day. Here is my question (10) Consider a low-speed subsonic wind tunnel with a 12/1 contraction area ratio for the nozzle. If the flow in the test section is at a standard sea level conditions with a velocity of 50 m /s, calculate the height difference in a U-tube mercury manometer with one side connected to the nozzle inlet and the other to the test section. ρHg = 13.6 x 103 kg/ m^3.arrow_forwardCarbon dioxide (k=1.289; Cp=0.846 kj/kgK; R=0.1889 kj/kgk) enters a convergent-divergent nozzle at 65 m/s, 350 oC and 300 kPa and leaves the nozzle in a supersonicleaves at speed. What is the pressure of carbon dioxide in the neck of the nozzle?arrow_forwardA piston moves along a tube containing air at an initial sound speed of 330 m/s. When the piston velocity is 250 m/s, it drives a shock wave which propagates at a velocity of 500 m/s. When the piston velocity is 100 m/s, it drives a shock at 400 m/s. Use the hypersonic equivalence principle to calculate the shock angles (in degrees) on a flat plate: At an incidence of 6 degrees and a Mach number of 7.2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License