![EBK GENERAL CHEMISTRY: THE ESSENTIAL CO](https://www.bartleby.com/isbn_cover_images/8220106637203/8220106637203_largeCoverImage.jpg)
Concept explainers
Interpretation: The given species have to be arranged in the increasing order of their bond order.
Concept Introduction:
Bond order:
Bond order determines the number of bonds in the pair of two atoms. So, it is the quantitative measure of a bond.
The bond order can be calculated as follows:
Trends in the bond order:
The species with the negative charge means that electrons are getting added in the anti-bonding molecular orbital. So the number of electrons in the anti-bonding molecular orbital increases accordingly. Ultimately, the bond order decreases. Whereas, the species with the positive charge means that electrons are being removed from the anti-bonding molecular orbital. So the number of electrons in the anti-bonding molecular orbital decreases accordingly. Ultimately, the bond order increases.
![Check Mark](/static/check-mark.png)
Answer to Problem 10.102SP
The given species can be arranged in the increasing order of their bond order as follows:
Explanation of Solution
Given: The order of molecular orbitals of
The molecular orbitals of
The molecular orbital configuration of
Bond order of
The molecular orbitals of
The bond order of
Similarly, the bond orders can be calculated for each of the given species as follows:
Bond order of
The molecular orbitals of
The bond order of
Bond order of
The molecular orbitals of
The bond order of
Bond order of
The molecular orbitals of
The bond order of
Bond order of
The molecular orbitals of
The bond order of
The calculated bond orders can be tabulated as follows:
Given molecule | Bond order. |
1.5 | |
2 | |
2.5 | |
3 | |
2.5 |
Based on this tabulation, the given species can be arranged in the increasing order of their bond order as follows:
The given species have been arranged in the increasing order of their bond order.
Want to see more full solutions like this?
Chapter 10 Solutions
EBK GENERAL CHEMISTRY: THE ESSENTIAL CO
- Don't used hand raiting and don't used Ai solutionarrow_forwardHighlight in red each acidic location on the organic molecule at left. Highlight in blue each basic location on the organic molecule at right. Note for advanced students: we mean acidic or basic in the Brønsted-Lowry sense only. Cl N شیخ x Garrow_forwardQ4: Draw the mirror image of the following molecules. Are the molecules chiral? C/ F LL CI CH3 CI CH3 0 CI CH3 CI CH3 CH3arrow_forward
- Complete combustion of a 0.6250 g sample of the unknown crystal with excess O2 produced 1.8546 g of CO2 and 0.5243 g of H2O. A separate analysis of a 0.8500 g sample of the blue crystal was found to produce 0.0465 g NH3. The molar mass of the substance was found to be about 310 g/mol. What is the molecular formula of the unknown crystal?arrow_forward4. C6H100 5 I peak 3 2 PPM Integration values: 1.79ppm (2), 4.43ppm (1.33) Ipeakarrow_forwardNonearrow_forward
- 3. Consider the compounds below and determine if they are aromatic, antiaromatic, or non-aromatic. In case of aromatic or anti-aromatic, please indicate number of I electrons in the respective systems. (Hint: 1. Not all lone pair electrons were explicitly drawn and you should be able to tell that the bonding electrons and lone pair electrons should reside in which hybridized atomic orbital 2. You should consider ring strain- flexibility and steric repulsion that facilitates adoption of aromaticity or avoidance of anti- aromaticity) H H N N: NH2 N Aromaticity (Circle) Aromatic Aromatic Aromatic Aromatic Aromatic Antiaromatic Antiaromatic Antiaromatic Antiaromatic Antiaromatic nonaromatic nonaromatic nonaromatic nonaromatic nonaromatic aromatic TT electrons Me H Me Aromaticity (Circle) Aromatic Aromatic Aromatic Aromatic Aromatic Antiaromatic Antiaromatic Antiaromatic Antiaromatic Antiaromatic nonaromatic nonaromatic nonaromatic nonaromatic nonaromatic aromatic πT electrons H HH…arrow_forwardA chemistry graduate student is studying the rate of this reaction: 2 HI (g) →H2(g) +12(g) She fills a reaction vessel with HI and measures its concentration as the reaction proceeds: time (minutes) [IH] 0 0.800M 1.0 0.301 M 2.0 0.185 M 3.0 0.134M 4.0 0.105 M Use this data to answer the following questions. Write the rate law for this reaction. rate = 0 Calculate the value of the rate constant k. k = Round your answer to 2 significant digits. Also be sure your answer has the correct unit symbol.arrow_forwardNonearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)