EBK PRINCIPLES OF ELECTRIC CIRCUITS
10th Edition
ISBN: 9780134879499
Author: Buchla
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 9TFQ
To express 56 × 106 with a metric prefix, the result is 56 M.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q2. For the transformer shown in Fig. 1.
A. Plot the winding connection for the transformer and justify your answer.
(4M)
B. If the transformer is adopted in 12 pulse diode rectifier, where two-series connected
bridge rectifiers are used to supply a highly inductive load with 100 A. (i) Select a
suitable turns ratio for the transformer (ii) Plot the line current of each winding (
secondary + primary) showing the current magnitude at each interval (iii) Use Fourier
Page 1 of 3
analysis to obtain the Fourier series of all line currents then calculate the THD of the
input current.
(8=0°
(16M)
(Y) = 30°
Fig. 1
P. I v
I
Q2. For the transformer shown in Fig.1,
A. Find the phase shift between the primary and star-connected secondary.
B. If the transformer is adopted in a 12-pulse diode rectifier, where a two-series
connected bridge rectifier is connected in series and supplies a highly inductive load
(i) Select a suitable turns ratio for the transformer
(ii) Plot the line current of each winding (secondary + primary).
(iii)Using Fourier analysis to obtain the Fourier series of all line currents, then calculate
the THD of the input current.
(iv) Draw the output voltage of the first and second rectifiers and give the relation of
the total output voltage.
N2
B
C
Fig. 1
N3
a
Q2.A. It is planned to use the transformer shown in Fig. 1, a 12-pulse rectifier. Each
secondary is connected to three phase controlled bridge rectifier. The two rectifiers
are connected in series to supply a highly inductive load.
1. Based on the phasor relationship between different windings. If suitable turns
ratio is selected, is it possible to use this transformer to produce 12 pulse
output voltage? Show the reason behind your answer.
2. Assuming this arrangement is possible to be used in 12-pulse rectifier, draw
the output voltage of the 1st and 2nd rectifier and give the relation of the total
output voltage.
3. Use the Fourier analysis to show the harmonics in all line currents of the
transformer.
A
B
in
C
Fig. 1
b
la
a
2
b.
Chapter 1 Solutions
EBK PRINCIPLES OF ELECTRIC CIRCUITS
Ch. 1 - Express 4,750 in scientific notation.Ch. 1 - Express 0.00738 in scientific notation.Ch. 1 - Express 9.12 103 as a regular decimal number.Ch. 1 - Add 3.1 103 and 5.5 104.Ch. 1 - Subtract 3.5 106 from 2.2 105.Ch. 1 - Multiply 3.2 106 and 1.5 103.Ch. 1 - Divide 8 106 by 2 1010.Ch. 1 - Express 36,000,000,000 in engineering notation.Ch. 1 - Express 0.0000000000056 in engineering notation.Ch. 1 - Express using metric prefixes: 1. 56,000 2....
Ch. 1 - Convert 1 mA to microamperes.Ch. 1 - Convert 1,000 mV to millivolts.Ch. 1 - Convert 893 nA to microamperes.Ch. 1 - Convert 10,000 pF to microfarads.Ch. 1 - Convert 0.0022 mF to picofarads.Ch. 1 - Convert 2.2 k to megohms.Ch. 1 - Add 2,873 mA to 10,000 mA; express the sum in...Ch. 1 - How would you show the number 10,000 showing three...Ch. 1 - What is the difference between a measured quantity...Ch. 1 - Round 3.2850 to three significant digits using the...Ch. 1 - Derived units in the SI system use base units in...Ch. 1 - The base electrical unit in the SI system is the...Ch. 1 - The supplementary SI units are for angular...Ch. 1 - The number 3,300 is written as 3.3 103 in both...Ch. 1 - A negative number that is expressed in scientific...Ch. 1 - When you multiply two numbers written in...Ch. 1 - When you divide two numbers written in scientific...Ch. 1 - The metric prefix micro has an equivalent power of...Ch. 1 - To express 56 106 with a metric prefix, the...Ch. 1 - 0.047 F is equal to 47 nFCh. 1 - 0.010 F is equal to 10,000 pF.Ch. 1 - 10,000 kW is equal to 1 MW.Ch. 1 - The number of significant digits in the number...Ch. 1 - To express 10,000 with three significant figures,...Ch. 1 - When you apply the round-to-even rule to round off...Ch. 1 - If a series of measurements are precise, they must...Ch. 1 - The base SI electrical unit is the ampere.Ch. 1 - Which of the following is not an electrical...Ch. 1 - The unit of current is a. volt b. watt c. ampere...Ch. 1 - The number of base units in the SI system is a. 3...Ch. 1 - An mks measurement unit is one that a. can be...Ch. 1 - In the Sl system, the prefix k means to multiply...Ch. 1 - Prob. 6STCh. 1 - The quantity 4.7 103 is the same as a) 470 b)...Ch. 1 - The quantity 56 103 is the same as a. 0.056 b....Ch. 1 - Prob. 9STCh. 1 - Ten milliamperes can be expressed as a. 10 MA b....Ch. 1 - Five thousand volts can be expressed as a. 5,000 V...Ch. 1 - Twenty million ohms can be expressed as a. 20 m b....Ch. 1 - Prob. 13STCh. 1 - When reporting a measured value, it is okay to...Ch. 1 - Express each of the following numbers in...Ch. 1 - Express each fractional number in scientific...Ch. 1 - Express each of the following numbers in...Ch. 1 - Express each of the following numbers in...Ch. 1 - Express each of the following numbers in...Ch. 1 - Express each of the following as a regular decimal...Ch. 1 - Express each of the following as a regular decimal...Ch. 1 - Express each number in regular decimal form: a....Ch. 1 - Add the following numbers: a. (9.2 106) + (3.4 ...Ch. 1 - Prob. 10PCh. 1 - Perform the following multiplications: a. (5 ...Ch. 1 - Prob. 12PCh. 1 - Perform the indicated operations: a. (8 104 + 4 ...Ch. 1 - Starting with 1012, list the powers of ten in...Ch. 1 - Express each of the following numbers in...Ch. 1 - Express each number in engineering notation: a....Ch. 1 - Express each number in engineering notation: a....Ch. 1 - Express each number in engineering notation: a....Ch. 1 - Add the following numbers and express each result...Ch. 1 - Multiply the following numbers and express each...Ch. 1 - Divide the following numbers and express each...Ch. 1 - Express each number in Problem 15 in ohms using a...Ch. 1 - Express each number in Problem 17 in amperes using...Ch. 1 - Express each of the following as a quantity having...Ch. 1 - Express the following using metric prefixes: a. 3 ...Ch. 1 - Express the following using metric prefixes: a....Ch. 1 - Express each quantity by converting the metric...Ch. 1 - Express each quantity in engineering notation: a....Ch. 1 - Perform the indicated conversions: a. 5 mA to...Ch. 1 - Determine the following: a. The number of...Ch. 1 - Add the following quantities: a. 50 mA + 680 A b....Ch. 1 - Do the following operations: a. 10 k (2.2 k + 10...Ch. 1 - How many significant digits are in each of the...Ch. 1 - Round each of the following numbers to three...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q4. Give the reasons for the following 1. In AC machines drives, the frequency modulation index should be integer regardless the value of switching frequency. 2. Variable de link voltage is adopted in inverter operating in square wave operation mode 3. Practical values of switch utilization factor is different from theoretical values 4. In three-phase inverter with my is odd and multiple of 3, the even and tripplen harmonics are zero. 5. The PSC-PWM is attractive for the modular multilevel converterarrow_forwardQ6.B. Answer the following questions 1. Does the steady state load current in a half bridge inverter has an average value and what is the adverse effect of the average current component? 2. Can the LPF of single phase bridge inverter based on bipolar PWM be used with single phase bridge inverter based on unipolar PWM? Explainarrow_forwardQ3. Answer the following questions T 1. Compared to the bipolar voltage-switching scheme, the unipolar scheme is "effectively" doubling the switching frequency. Explain the statement's meaning and how this effect can be generated. 2. What are the properties of a good power switch, and what are its basic ratings? 3. What are the objectives of any PWM strategy for three-phase inverters? 4. Why is the current control PWM rectifier in the dq rotating reference frame preferred over the abc reference frame? 5. Define the switch utilization factor. Show how this factor can be calculated for different single-phase inverters for square wave operation mode at the maximum rated output.arrow_forward
- Q1.B. Explain output control by voltage cancellation in a single-phase inverter. What are the advantages over square wave operation?arrow_forwardQ3.B. What is the problem of three-phase HW rectifier and how can be resolved?arrow_forwardQ3-consider the unity feedback system shown below: a.Evaluate general formula of ess? b.Calculate the steady state error of the closed loop system due to R(s) unit step input, D(s)=0]? c.Calculate the steady-state response when D(s) and ramp and R(s)=0?arrow_forward
- - = 400KHZ. Q1. In a Boost converter, L = 25 μH, Vin = 12 V, D = 0.4, P = 25 W, and fs (i) if the output load is changing. Calculate the critical value of the output load P,below which the converter will enter the discontinuous conduction mode of operation. Assume the total turn-on loss is equal to 2 W. (ii) Assuming the input voltage fluctuates from 10 V to 14 V and the output voltage is regulated to 20 V. Calculate the critical value of the inductance L below which this Boost converter will enter the discontinuous conduction mode of operation at P = 5 W. (iii) Draw the waveforms for inductor voltage, inductor current, and the capacitor current for this Boost converter at the output load that causes it to operate at the border of continuous and discontinuous modes. vd tow 77 N₂ AT 22 1-1arrow_forwardDon't use ai to answer I will report you answerarrow_forwardAnswer the following questions: 1- Write radiation resistance (R.) equation for infinitesimal dipole antenna. 2- Write the angle expression form of first null beam width (FNBW) for 2/2 dipole. 3- Define the Directivity of antenna. 4- Write radar cross section equation. 5- Write the input impedance (Z) expression of lossless transmission line.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage LearningElectricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage Learning
Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning
Electricity for Refrigeration, Heating, and Air C...
Mechanical Engineering
ISBN:9781337399128
Author:Russell E. Smith
Publisher:Cengage Learning
Number Systems Introduction - Decimal, Binary, Octal & Hexadecimal; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=FFDMzbrEXaE;License: Standard Youtube License