
Concept explainers
The population of a culture of yeast cells is studied in the laboratory to see the effects of limited resources (food, space) on population growth, (a) Make a graph of the yeast population (measured as total mass of yeast cells) versus elapsed time. Draw a best-fit smooth curve, (b) After a long time, the population approaches a maximum known as the carrying capacity. Estimate the carrying capacity for this population, (c) When the population is much smaller than the carrying capacity, the growth is expected to be exponential: m(t) = m0ert, where m is the population at any time t, m0 is the initial population, r is the intrinsic growth rate (i.e., the growth rate in the absence of limits), and e is the base of natural logarithms (see Appendix A.3). To obtain a straight-line graph from this exponential relationship, we can plot the natural logarithm of m/m0.
Make a graph of In (m/m0) versus t from t = 0 to t = 6.0 h, and use it to estimate the intrinsic growth rate r for the yeast population.

Want to see the full answer?
Check out a sample textbook solution
Chapter 1 Solutions
Physics
- Hi! I need help with these calculations for part i and part k for a physics Diffraction Lab. We used a slit width 0.4 mm to measure our pattern.arrow_forwardExamine the data and % error values in Data Table 3 where the angular displacement of the simple pendulum decreased but the mass of the pendulum bob and the length of the pendulum remained constant. Describe whether or not your data shows that the period of the pendulum depends on the angular displacement of the pendulum bob, to within a reasonable percent error.arrow_forwardIn addition to the anyalysis of the graph, show mathematically that the slope of that line is 2π/√g . Using the slope of your line calculate the value of g and compare it to 9.8.arrow_forward
- An object is placed 24.1 cm to the left of a diverging lens (f = -6.51 cm). A concave mirror (f= 14.8 cm) is placed 30.2 cm to the right of the lens to form an image of the first image formed by the lens. Find the final image distance, measured relative to the mirror. (b) Is the final image real or virtual? (c) Is the final image upright or inverted with respect to the original object?arrow_forwardConcept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 5.90 cm. The focal length of the lens is -2.60 cm. Find (a) the image distance and (b) the object distance.arrow_forwardPls help ASAParrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College





