PRINT COMPANION - BUS DRIVEN INFO SYS
6th Edition
ISBN: 9781264115273
Author: BALTZAN
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 1, Problem 6CBT
To determine
To write:
The answer of the given Questions based on the given Statement.
- Why is it so easy today for student to create start-ups while still in college?
- what would it take for you to start a business from your dorm room?
- How will this course help you prepare to start your own business?
- Research the internet and find three examples of college student start-ups.
- What's stopping you from starting your own business today? You are living in the information age, and with the power of MIS, it is easier than ever to jump into the business game with very little capital investment. Why not start your own business today?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The input reactance of an infinitesimal linear dipole of length A/60 and radius a=A/200
is given by
Xin = – 120
[In(€/a) — 1]
tan(ke)
Assuming the wire of the dipole is copper with a conductivity of 5.7 x 10' S/m,
determine at f = 1 GHz the
(a) loss resistance
(b) radiation resistance
(c) radiation efficiency
(d) VSWR when the antenna is connected to a 50-ohm line
Example
Solve the octic polynomial
2x⁸-9x⁷+20x⁶-33x⁵+46x⁴-66x³+80x²-72x+32=0
Solution
Divide by x⁴
2x⁴-9x³+20x²-33x+46-66/x + 80/x² - 72/x³ + 32/x⁴=0
Combine and bring terms
2(x⁴+16/x⁴) - 9(x³+8/x³) +20(x²+4/x²)-33(x+2/x) + 46= 0
Let use substitution
Let x+2/x =u
(x+2/x)²= u²
x²+2x*2/x + 4/x² = u²
x²+4/x²= u²-4
(x+2/x)³= x³+8/x³+3x*2/x(x+2/x)
u³= x³+8/x²+6u
x³+8/x³= u³-6u
(x²+4/x²)²= x⁴+2x²*4/x² + 16/x⁴
(u²-4)²= x⁴+16/x⁴ + 8
x⁴+16/x⁴ = (u²-4)²-8
x⁴+16/x⁴ = u⁴-8u²+8
2(u⁴-8u²+8)-9(u³-6u)+20(u²-4)-33u+46=0
Expand and simplify
2u⁴-9u³+4u²+21u-18=0
After checking
(u-1)(u-2) Are factors
Then
2u²-3u-9=0
u=3, u=-3/2
Assignment question
Solve the octic polynomial
2s⁸+s⁷+2s⁶-31s⁴-16s³-32s²-160=0 using the above example question, please explain in detail
please explain each method used, thank you
Chapter 1 Solutions
PRINT COMPANION - BUS DRIVEN INFO SYS
Ch. 1 - Prob. 1OCQCh. 1 - Prob. 2OCQCh. 1 - Prob. 3OCQCh. 1 - Prob. 4OCQCh. 1 - Prob. 5OCQCh. 1 - Prob. 6OCQCh. 1 - Prob. 1RQCh. 1 - Prob. 2RQCh. 1 - Prob. 3RQCh. 1 - Prob. 4RQ
Ch. 1 - Prob. 5RQCh. 1 - Prob. 6RQCh. 1 - Prob. 7RQCh. 1 - Prob. 8RQCh. 1 - Prob. 9RQCh. 1 - Prob. 10RQCh. 1 - Prob. 11RQCh. 1 - Prob. 12RQCh. 1 - Prob. 13RQCh. 1 - Prob. 14RQCh. 1 - Prob. 15RQCh. 1 - Prob. 1CCOCh. 1 - Prob. 2CCOCh. 1 - Prob. 3CCOCh. 1 - Prob. 4CCOCh. 1 - Prob. 5CCOCh. 1 - Prob. 6CCOCh. 1 - Prob. 1CCTCh. 1 - Prob. 2CCTCh. 1 - Prob. 3CCTCh. 1 - Prob. 4CCTCh. 1 - Prob. 5CCTCh. 1 - Prob. 6CCTCh. 1 - Prob. 1CBTCh. 1 - Prob. 2CBTCh. 1 - Prob. 3CBTCh. 1 - Prob. 4CBTCh. 1 - Prob. 5CBTCh. 1 - Prob. 6CBTCh. 1 - Prob. 7CBTCh. 1 - Prob. 8CBTCh. 1 - Prob. 9CBTCh. 1 - Prob. 10CBTCh. 1 - Prob. 11CBTCh. 1 - Prob. 12CBTCh. 1 - Prob. 13CBTCh. 1 - Prob. 14CBTCh. 1 - Prob. PIAYKBPCh. 1 - Prob. PIIAYKBPCh. 1 - Prob. PIIIAYKBPCh. 1 - Prob. PIVAYKBPCh. 1 - Prob. PVIAYKBPCh. 1 - Prob. PVIIAYKBPCh. 1 - Prob. PVIIIAYKBPCh. 1 - Prob. PIXAYKBPCh. 1 - Prob. PXAYKBPCh. 1 - Prob. PXIAYKBP
Knowledge Booster
Similar questions
- b) Another waveform g(t) is defined by =0 t≥0, α>0 otherwise g(t)= At exp(-at) and is plotted in Figure 1 (for representative values of 4 = 1 and α = 1). g(t) 0.4T 0.3+ 0.2 0.1+ 2 0 2 Figure 1 8 c) Show that its amplitude spectrum is |G(@)| = - A (a²+0²)² Describe briefly, with the aid of labelled sketches, how changing a affects the waveform in both the time and frequency domains. d) Deduce the Fourier transform H(@) of h(t) = g(t)+g(t+b)+g(t-b) and calculate its DC amplitude H(0).arrow_forward"I need an expert solution because the previous solution is incorrect." An antenna with a radiation impedance of 75+j10 ohm, with 10 ohm loss resistance, is connected to a generator with open-circuit voltage of 12 v and an internal impedance of 20 ohms via a 2/4-long transmission line with characteristic impedance of 75 ohms. (a) Draw the equivalent circuit (b) Determine the power supplied by the generator. (c) Determine the power radiated by the antenna. (d) Determine the reflection coefficient at the antenna terminals.arrow_forward--3/5- b) g(t) = 3 1441 g(t+mT) = g(t) -31 (i) Complex fourier coefficient Cn. (ii) Complex fourier coefficients - real fourier coefficient (the first 5 non-zero terms) of (iii) sketch the amplitude spectrum g(t) |Cal against n. n= -3 ⇒n=3 (labelling the axis).arrow_forward
- Q4) (i) Calculate the fourier transform of : h(t) 2T (is) h(t) 2T -T о T 2T ·(-++T). cos2t ost≤T (iii) hro (4) ((-++T). cos otherwisearrow_forwardQ2)a) consider the Circuit in figure 2 with initial conditions of Vc (o) = 5V, I₁ (o) = 1A, (i) redraw the circuit in the frequency domain using laplace Wansforms. (ii) using this circuit derive an equation for the Voltage across the inductor in the time domain.. 3.12 ww =V/3F ZH (figure 2) d) Solve the following second order differential equation using laplace transforms. d12 + 5 dx 3x=71 dt - with initial conditions x² (0) = 2, α(0) = 1arrow_forwardb) Another periodic waveform is defined by T c) g(t)= T with g(t+mT) = g(t) and m is an integer. (i) Sketch g(t) over two full cycles in the time domain, labelling the axes. (ii) Derive the formulae for the complex Fourier coefficients c₁ for g(t). For a periodic waveform h(t), if its complex Fourier coefficients are T T when n is odd T 2n²² T 4nn when n is even and not zero 4nn please derive the first five non-zero terms of the real Fourier series for h(t).arrow_forward
- Q3)α) f(t) = (-+- 1 Isto f(t+mT) = f(t). L+- I Ost ST integer (i) sketch f(t) 2 full cycles time domain. (labelling the axis). (ii) Derive the formula for the real fourier Coefficients (i) Real Fourier series f(t), first 5 non-terms. an bn for f(t).arrow_forwardQ3. a) A periodic waveform is defined by T 3 0≤t< f(t) = SIarrow_forwardQ2. a) Sketch the following waveform f(t)=Vo -1/2≤t≤1/2 =0 otherwise and show that its Fourier transform is 2V ωτ ωτ F(s)-sinotsinc) 2 Use this result to sketch a fully labelled graph of the amplitude spectrum of a single square voltage pulse, of amplitude 24V and pulse width 1.4μs, using units of Hz for the frequency axis. (Note: graph paper is not required - a clear, fully-labelled sketch is adequate).arrow_forwardBased on Fig 2, there are 5 states: A, B, C, D, and the goal state. The goal state, when reached gives 80 points as reward, and the discount factor is 0.5. What is the total reward at state A when you first start playing the game? A 60 20 20 50 50 25 C 4 Goal 26 80 B a 80 O b. 60 O c. 20 Od. 50 20 20 -10 D 30arrow_forwardc) Another periodic waveform is defined by 4t g(t)= 0≤tarrow_forwardQ1. a) A periodic waveform is defined by f(t)= 3 0≤tarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- MATLAB: An Introduction with ApplicationsEngineeringISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncEssentials Of Materials Science And EngineeringEngineeringISBN:9781337385497Author:WRIGHT, Wendelin J.Publisher:Cengage,Industrial Motor ControlEngineeringISBN:9781133691808Author:Stephen HermanPublisher:Cengage Learning
- Basics Of Engineering EconomyEngineeringISBN:9780073376356Author:Leland Blank, Anthony TarquinPublisher:MCGRAW-HILL HIGHER EDUCATIONStructural Steel Design (6th Edition)EngineeringISBN:9780134589657Author:Jack C. McCormac, Stephen F. CsernakPublisher:PEARSONFundamentals of Materials Science and Engineering...EngineeringISBN:9781119175483Author:William D. Callister Jr., David G. RethwischPublisher:WILEY
MATLAB: An Introduction with ApplicationsEngineeringISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncEssentials Of Materials Science And EngineeringEngineeringISBN:9781337385497Author:WRIGHT, Wendelin J.Publisher:Cengage,Industrial Motor ControlEngineeringISBN:9781133691808Author:Stephen HermanPublisher:Cengage LearningBasics Of Engineering EconomyEngineeringISBN:9780073376356Author:Leland Blank, Anthony TarquinPublisher:MCGRAW-HILL HIGHER EDUCATIONStructural Steel Design (6th Edition)EngineeringISBN:9780134589657Author:Jack C. McCormac, Stephen F. CsernakPublisher:PEARSONFundamentals of Materials Science and Engineering...EngineeringISBN:9781119175483Author:William D. Callister Jr., David G. RethwischPublisher:WILEY