College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 63GP
Weddell seals foraging in open water dive toward the ocean bottom by swimming forward in a straight-line path tipped below the horizontal. The tracking data for one seal showed it taking 4.0 min to descend 360 m below the surface while moving 920 m horizontally.
- a. What was the angle of the seal's path below the horizontal?
- b. What distance did the seal cover in making this dive?
- c. What was the seal's speed, in m/s?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Whale sharks swim forward while ascending or descending. They swim along a straight-line path at a
shallow angle as they move from the surface to deep water or from the depths to the surface. In one
recorded dive, a shark started 50 m below the surface and swam at 0.85 m/s along a path tipped at a
13° angle above the horizontal until reaching the surface.
a. What was the horizontal distance between the shark's starting and ending positions?
If a dog is running at 4.4074 m/s and jumps a hurdle at 26 degrees with a total distance of 1.524 m. a. what is the time it takes to make the jump. b. what is the dogs magnitude and and direction of the dog velocity.
A diver running 3.0 m/s dives out horizontally from the edge of a
vertical cliff and 4.0 s later reaches the water below.
a. How high was the cliff?
b. How far from its base did the diver hit the water?
Chapter 1 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 1 - a Write a paragraph describing the particle model....Ch. 1 - A softball player slides into second base. Use the...Ch. 1 - A car travels to the left at a steady speed for a...Ch. 1 - A ball is dropped from the roof of a tall building...Ch. 1 - Write a sentence or two describing the difference...Ch. 1 - Give an example of a trip you might take in your...Ch. 1 - Write a sentence or two describing the difference...Ch. 1 - The motion of a skateboard along a horizontal axis...Ch. 1 - You are standing on a straight stretch of road and...Ch. 1 - Two friends watch a jogger complete a 400 m lap...
Ch. 1 - A softball player hits the ball and starts running...Ch. 1 - A child is sledding on a smooth, level patch of...Ch. 1 - A skydiver jumps out of an airplane. Her speed...Ch. 1 - Your roommate drops a tennis ball from a...Ch. 1 - A car is driving north at a steady speed. It makes...Ch. 1 - A toy car rolls down a ramp, then across a smooth,...Ch. 1 - Density is the ratio of an object's mass to its...Ch. 1 - A student walks 1.0 mi west and then 1.0 mi north....Ch. 1 - You throw a rock upward. The rock is moving...Ch. 1 - Which of the following motions could be described...Ch. 1 - Which of the following motions is described by the...Ch. 1 - A bird flies 3.0 km due west and then 2.0 km due...Ch. 1 - Weddell seals make holes in sea ice so that they...Ch. 1 - A bird flies 3.0 km due west and then 2.0 km due...Ch. 1 - A woman walks briskly at 2.00 m/s. How much time...Ch. 1 - Compute 3.24 m + 0.532 m to the correct number of...Ch. 1 - A rectangle has length 3.24 m and height 0.532 m....Ch. 1 - The earth formed 4.57 109 years ago. What is this...Ch. 1 - Prob. 29MCQCh. 1 - A car skids to a halt to avoid hitting an object...Ch. 1 - A man rides a bike along a straight road for 5...Ch. 1 - A jogger running east at a steady pace suddenly...Ch. 1 - Figure P1.4 shows Sue along the straight-line path...Ch. 1 - Keira starts at position x = 23 m along a...Ch. 1 - A car travels along a straight east-west road. A...Ch. 1 - Foraging bees often move in straight lines away...Ch. 1 - A security guard walks at a steady pace, traveling...Ch. 1 - List the following items in order of decreasing...Ch. 1 - Figure P1.10 shows the motion diagram for a horse...Ch. 1 - It takes Harry 35 s to walk from x = 12 m to x = ...Ch. 1 - A dog trots from x = 12 m to x = 3 m in 10 s....Ch. 1 - A ball rolling along a straight line with velocity...Ch. 1 - Convert the following to SI units: a. 9.12 s b....Ch. 1 - Convert the following to SI units: a. 8.0 in b. 66...Ch. 1 - Convert the following to SI units: a. 1.0 hour b....Ch. 1 - How many significant figures does each of the...Ch. 1 - How many significant figures does each of the...Ch. 1 - Compute the following numbers to three significant...Ch. 1 - lf you make multiple measurements of your height,...Ch. 1 - The Empire State Building has a height of 1250 ft....Ch. 1 - Blades of grass grow from the bottom, so, as...Ch. 1 - Estimate the average speed, in m/s, with which the...Ch. 1 - Carol and Robin share a house. To get to work,...Ch. 1 - Loveland, Colorado, is 18 km due south of Fort...Ch. 1 - Joe and Max shake hands and say goodbye. Joe walks...Ch. 1 - A city has streets laid out in a square grid, with...Ch. 1 - A butterfly flies from the top of a tree in the...Ch. 1 - A garden has a circular path of radius 50 m. John...Ch. 1 - A circular test track for cars in England has a...Ch. 1 - Migrating geese tend to travel at approximately...Ch. 1 - Black vultures excel at gliding flight; they can...Ch. 1 - A hiker walks 25 north of east for 200m. How far...Ch. 1 - A hiker is climbing a steep 10 slope. Her...Ch. 1 - A ball on a porch rolls 60 cm to the porch's edge,...Ch. 1 - A kicker punts a football from the very center of...Ch. 1 - A squirrel completing a short glide travels in a...Ch. 1 - A squirrel in a typical long glide covers a...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 46 through 50 show a motion diagram. For...Ch. 1 - Problems 46 through 50 show a motion diagram. For...Ch. 1 - Problems 46 through 50 show a motion diagram. For...Ch. 1 - Problems 46 through 50 show a motion diagram. For...Ch. 1 - Problems 46 through 50 show a motion diagram. For...Ch. 1 - Prob. 51GPCh. 1 - Joseph watches the roadside mile markers during a...Ch. 1 - Alberta is going to have dinner at her...Ch. 1 - The end of Hubbard Glacier in Alaska advances by...Ch. 1 - The earth completes a circular orbit around the...Ch. 1 - Shannon decides to check the accuracy of her...Ch. 1 - The Nardo ring is a circular test track for cars....Ch. 1 - Motor neurons in mammals transmit signals from the...Ch. 1 - Satellite data taken several times per hour on a...Ch. 1 - The bacterium Escherichia coli (or E. coli) is a...Ch. 1 - The bacterium Escherichia coli (or E. coli) is a...Ch. 1 - The sun is 30 above the horizon. It makes a...Ch. 1 - Weddell seals foraging in open water dive toward...Ch. 1 - A large passenger aircraft accelerates down the...Ch. 1 - Whale sharks swim forward while ascending or...Ch. 1 - Starting from its nest, an eagle flies at constant...Ch. 1 - John walks 1.00 km north, then turns right and...Ch. 1 - The images of trees in Figure P1.68 come from a...Ch. 1 - The images of trees in Figure P1.68 come from a...Ch. 1 - The images of trees in Figure P1.68 come from a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to etch of the following. Explain your reasoning. 11.Which of these star has the longest...
The Cosmic Perspective Fundamentals (2nd Edition)
11. A ball thrown horizontally at 25 m/s travels a horizontal distance of 50 m before hitting the ground. From...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Write each number in scientific notation.
14. 1,400,000
Applied Physics (11th Edition)
Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams, show that the dot product and cross produc...
Introduction to Electrodynamics
The diagram shows Bob’s view of the passing of two identical spaceships. Anna’s and his own, where v=2 . The le...
Modern Physics
Briefly summarize the evidence, both real and imagined, that had led to widespread belief in a martian civiliza...
Life in the Universe (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A train leaving Albuquerque travels 293 miles, due east, to Amarillo. The train spends a couple of days at the station in Amarillo and then heads back west 107 miles where it stops in Tucumcari. Suppose the positive x direction points to the east and Albuquerque is at the origin of this axis. a. What is the total distance traveled by the train from Albuquerque to Tucumcari? b. What is the displacement of the train for the entire journey? Give both answers in appropriate SI units.arrow_forwardA student stands at the edge of a cliff and throws a stone horizontally over the edge with a speed of vi = 18.0 m/s. The cliff is h = 50.0 m above a body of water as shown in Figure P4.13. (a) What are the coordinates of the initial position of the stone? (b) What are the components of the initial velocity of the stone? (c) What is the appropriate analysis model for the vertical motion of the stone? (d) What is the appropriate analysis model for the horizontal motion of the stone? (e) Write symbolic equations for the x and y components of the velocity of the stone as a function of time. (f) Write symbolic equations for the position of the stone as a function of time. (g) How long after being released does the stone strike the water below the cliff? (h) With what speed and angle of impact does the stone land? Figure P4.13arrow_forwardFigure OQ4.1 shows a bird's-eye view of a car going around a highway curve. As the car moves from point 1 to point 2, its speed doubles. Which of the vectors (a) through (e) shows the direction of the cars average acceleration between these two points?arrow_forward
- A velocity vector has a magnitude of 720 m/s. Two students draw arrows representing this vector. Clarisse chooses a scale such that 1 cm 100 m/s. a. What is the length of the arrow that Clarisse draws? b. Francoiss arrow is half as long as Clarisses. What is Francoiss scale? c. Is one students choice better than the other? If so, what makes it a better scale?arrow_forwardThe same vectors that are shown in Figure P3.6 are shown in Figure P3.42. The magnitudes are F1 = 1.90f, F2 = f, and F3 = 1.4f, where f is a constant. a. Use the coordinate system shown in Figure P3.42 to find R=F1+F2+F3 in component form in terms of f. b. If Rx = 0.33, what is Ry? c. Check your result by comparing your answer to that of Problem 6. FIGURE P3.42arrow_forwardFigure P3.40 shows a map of Grand Canyon National Park in Arizona. You need a ruler and protractor for this problem, a. Paul hikes from Cape Royale to Point Sublime. Find the magnitude and direction of his displacement, ignoring any difference in altitude between the two points, b. Lil hikes from Point Sublime to Cape Royale. Find the magnitude and direction of her displacement. Compare your answer with that of part (a).arrow_forward
- A student stands at the edge of a cliff and throws a stone horizontally over the edge with a speed of vi= 18.0 m/s. The cliff is h = 50.0 m above a body of water as shown in Figure P3.19. (a) What are the coordinates of the initial position of the stone? (b) What are the components of the initial velocity of the stone? (c) What is the appropriate analysis model for the vertical motion of the stone? (d) What is the appropriate analysis model for the horizontal motion of the stone? (e) Write symbolic equations for the x and y components of the velocity of the stone as a function of time. (f) Write symbolic equations for the position of the stone as a function of time. (g) How long after being released does the stone strike the water below the cliff? (h) With what speed and angle of impact does the stone land?arrow_forwardTwo birds begin next to each other and then fly through the air at the same elevation above level ground at 22.5 m/s. One flies northeast, and the other flies northwest. After flying for 10.5 s, what is the distance between them? Ignore the curvature of the Earth.arrow_forward(a) If AF=BF , can we conclude A=B ? (b) If AF=BF , can we conclude A=B ? (c) If FA=BF , can we conclude A=B ? Why or why not?arrow_forward
- Jack and Jill ran up the hill at 3.0 m/s. The horizontal component of Jill’s velocity vector was 2.5 m/s.a. What was the angle of the hill?b. What was the vertical component of Jill’s velocity?arrow_forward4. A cannonball is fired on a level ground with an initial velocity of 40.0 m/s at an angle 55° above the horizontal. a. What are the horizontal and vertical components of the cannonball’s initial velocity? b. Calculate the cannonball’s time of flight. c. Find the cannonball’s maximum height above the ground. d. What is the cannonball’s range?arrow_forwardA C-130 cargo drops a package of food supplies to refugees on the ground. It travels at a speed if 100 m/s and at an elevation of 2000 m. a. How long will it take the package to reach the ground? b. How far does the package travel horizontally while falling? c. Find the horizontal & vertical components of the package velocity just it strikes the ground.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY