Astronomy Today (9th Edition)
9th Edition
ISBN: 9780134450278
Author: Eric Chaisson, Steve McMillan
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 1, Problem 4MC
To determine
The correct option, from the following options, for the effecton the solar dayas compared with a sidereal day, of the situation when Earth orbited the Sun in 9 months instead of 12.
(a) longer.
(b) shorter.
(c) unchanged.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the difference between a sidereal month and a synodic month? Which is longer?
Why?
The Earth covers about 1° per day in its orbit about the Sun, and the solar
day is slightly longer than the sidereal day. If Earth spun in a retrograde
direction like Venus but it still had the same sidereal period (23 hr 56
min), how long would the solar day be?
The solar day would be
72 hr and
min.
The earth revolves around the sun in exactly 365 1/4 days which is equivalent to 1 year. To make up for the loss of 1/4 day, the calendar was adjusted so that we have a leap year for every 4 years. If the earth were to speed in its motion slightly so that a year would be completed in exactly 365 days and 6 hours, how often would we need to have a leap year?
Chapter 1 Solutions
Astronomy Today (9th Edition)
Ch. 1 - Prob. 1DCh. 1 - Prob. 2DCh. 1 - Prob. 3DCh. 1 - Prob. 4DCh. 1 - Prob. 5DCh. 1 - Prob. 6DCh. 1 - Prob. 7DCh. 1 - Prob. 8DCh. 1 - Prob. 9DCh. 1 - Prob. 10D
Ch. 1 - Prob. 11DCh. 1 - Prob. 12DCh. 1 - Prob. 13DCh. 1 - Prob. 14DCh. 1 - Prob. 15DCh. 1 - Prob. 1MCCh. 1 - Prob. 2MCCh. 1 - Prob. 3MCCh. 1 - Prob. 4MCCh. 1 - Prob. 5MCCh. 1 - Prob. 6MCCh. 1 - Prob. 7MCCh. 1 - Prob. 8MCCh. 1 - Prob. 9MCCh. 1 - Prob. 10MCCh. 1 - Prob. 1PCh. 1 - Prob. 2PCh. 1 - Prob. 3PCh. 1 - Prob. 4PCh. 1 - Prob. 5PCh. 1 - Prob. 6PCh. 1 - Prob. 7PCh. 1 - Prob. 9P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In a part of Earth’s orbit where Earth is moving faster than usual around the Sun, would the length of the solar day change? If so, how? Explain.arrow_forwardOn the day of the vernal equinox, the day length for all places on Earth is actually slightly longer than 12 hours. Explain why.arrow_forwardConsider a calendar based entirely on the day and the month (the Moon’s period from full phase to full phase). How many days are there in a month? Can you figure out a scheme analogous to leap year to make this calendar work?arrow_forward
- Consider a planet of radius 10 x 106 m for which the length of a sidereal day is 5 x 104 s. Calculate the speed you would have with respect to the center of the planet, in m/s, if you were at a latitude of 5 degrees north. (Please answer to the fourth decimal place - i.e 14.3225)arrow_forwardThe sidereal day is one rotation of the Earth relative to the The day is longer by 4 minutes. O Sun; stars; solar O Stars; sun; solar O Sun; stars; sidereal O Stars; sun; sidereal while the solar day is one rotation of the Earth relative to thearrow_forwardTonight you see a waning crescent in the night sky. A few (n) days later, the night is once again clear and you see a waning crescent. How many degrees did the Moon advance in its orbit during this time frame?arrow_forward
- Right Ascension and Declination is a coordinate system for objects in the sky, and is analogous to longitude and latitude coordinates, respectively, for objects on Earth. Right ascension (RA) coordinates are given in hours (h), minutes (m), and seconds (s). Declination (DEC) coordinates are given in degrees (°), arcminutes ('), and arcseconds ("). Sirius is the brightest star in the night sky. Its RA and DEC coordinates are 6h 45 m 7.96 s and -16° 44' 78.6". Using unit conversion, find the RA coordinate only in hours and round the coordinate to 5 significant figures.arrow_forwardThe planet Earth has a semi-major axis of a = 1.00 AU and an orbital period of P= 1 sidereal year = 365.25 days = 3.156 x 10^7 s. Compute the orbital periods of bodies orbiting the Sun with each of the following semi-major axes. a) a = 0.1 AU b) a = 10 AU c) a = 100 AU d) a = 1000 AU e) a = 10,000 AU 1 AU = 1.496 x 10^8 km = 1.496 x 10^11 m = 1.496 x 10^13 cm. GM(sun) = 1.327 x 10^20 m^3/s^2 = (Newton's Constant) x (Mass of Sun) %3D %3Darrow_forwardAn arcminute is what fraction of a degree?arrow_forward
- a. Describe the concept of "sphere of influence" and how it is estimated. b. Calculate the SOI for the Moon relative to the Earth. c. Would a single lone star have a computed sphere of influence, as defined in this class, which could be calculated? If no, why not? If yes, how would you do it?arrow_forwardselect the most accurate statementarrow_forwardIf city is located in 2.8° north latitude and 46.0° east longitude. From there, you want to fly to a city in 7° north latitude and 52° east longitude. How much is the arc length of the big circle at 11000 m when the earth's radius is 6370 km? The arc length is 14223 km. Give your answer rounded to one kilmetre. Your last answer was interpreted as follows: 14223 XAnswer is incorrect. Keep centre of Earth as origin and define vectors to cities. Try again.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY