Astronomy Today (9th Edition)
9th Edition
ISBN: 9780134450278
Author: Eric Chaisson, Steve McMillan
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 1, Problem 1MC
To determine
The correct option, from the following options, for the consequence of the situation when Earth rotated twice as fast as it currently does, but its motion around the Sun stayed the same,
(a) The night would be twice as long.
(b) The night would be half as long.
(c) The year would be half as long.
(d) The length of the day would be unchanged.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The earth revolves around the sun in exactly 365 1/4 days which is equivalent to 1 year. To make up for the loss of 1/4 day, the calendar was adjusted so that we have a leap year for every 4 years. If the earth were to speed in its motion slightly so that a year would be completed in exactly 365 days and 6 hours, how often would we need to have a leap year?
Given that Earth is about 4.6 billion (4.6 x 10%) years old, how many precessional cycles have
occurred?
Suppose the Sun were somehow replaced by a star with five times as much mass. How long would the Earth year last in this last case? (hint: Newton’s version of Kepler’s 3rd Law)
Chapter 1 Solutions
Astronomy Today (9th Edition)
Ch. 1 - Prob. 1DCh. 1 - Prob. 2DCh. 1 - Prob. 3DCh. 1 - Prob. 4DCh. 1 - Prob. 5DCh. 1 - Prob. 6DCh. 1 - Prob. 7DCh. 1 - Prob. 8DCh. 1 - Prob. 9DCh. 1 - Prob. 10D
Ch. 1 - Prob. 11DCh. 1 - Prob. 12DCh. 1 - Prob. 13DCh. 1 - Prob. 14DCh. 1 - Prob. 15DCh. 1 - Prob. 1MCCh. 1 - Prob. 2MCCh. 1 - Prob. 3MCCh. 1 - Prob. 4MCCh. 1 - Prob. 5MCCh. 1 - Prob. 6MCCh. 1 - Prob. 7MCCh. 1 - Prob. 8MCCh. 1 - Prob. 9MCCh. 1 - Prob. 10MCCh. 1 - Prob. 1PCh. 1 - Prob. 2PCh. 1 - Prob. 3PCh. 1 - Prob. 4PCh. 1 - Prob. 5PCh. 1 - Prob. 6PCh. 1 - Prob. 7PCh. 1 - Prob. 9P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In a part of Earth’s orbit where Earth is moving faster than usual around the Sun, would the length of the solar day change? If so, how? Explain.arrow_forwardA planet with mass 4.83x1023 kg orbits a star with mass 6.95x1030 kg. The orbit is circular, and the distance from the planet to the sun is 244x106 km. What is the length of a year on this planet? Give your answer in earth years (1 earth year = 31,557,600 seconds).arrow_forwardCan earth be regarded as a point object when describing its yearly journey around the sun?a) Yesb) Noarrow_forward
- (to two decimal places): (what is ‘h’?) Eccentricity of earth orbit is 0.0167 µ(sun) = 1.32712E+11 km^3/s^ semimajor axis of Earth orbit = 1.49598E+08 need to figure out what ‘h’ is. a) Calculate the speed of the earth around the sun at aphelion? (29.29 KM/S) b) At perihelion? (30.29 KM/S)arrow_forwardFor daily and yearly motions, ancient astronomers thought that the sun, moon, stars, and planets were related to a rotatingarrow_forwardIf Earth rotated once every 48 hours, and everything else was the same, which of the following statements would not be true? High tide would happen less frequently. The length of a day would be longer. The length of the year would be longer. The daytime temperatures would be higher on average. There would still be summer and winter in the temperature zones.arrow_forward
- The Halley’s Comet regularly passes by the earth on its tour around the sun (at the time of Jesus’ birth itwas something different, most probably). The semi-major axis of the elliptical path is 17.8 AU(astronomical unit = 150·109 m). Halley’s last visit at our earth was in 1985. Are you going to experience the next visit?arrow_forwardIf Earth be one half of its present distance from the Sun, by how many days will the present one year on the surface of Earth will change?arrow_forwardI measured the angular separation of Jupiter's moons in arcminutes/arcseconds and converted this angle to radians. The conversion factor for degrees to radians was 57.3 degrees per radian. Which unit of measurement is larger? 1 degree or 1 radian?arrow_forward
- Estimation: The orbital period of the moon is 27.3 d, the average center-to-center distance center distance between the moon and earth is 3.82 * 10^8m, the length of an Earth year 365.25d, and the average center to center distance between earth and the sun is 1.50 x 10^11m. Use this data to estimate the ratio of the mass of the Sun to the mass of Earth. Compare this estimation to the measured ratio of 3.33 x 10^5. List some neglected factors that might account for any discrepancy.arrow_forwardThe planet Earth has a semi-major axis of a = 1.00 AU and an orbital period of P= 1 sidereal year = 365.25 days = 3.156 x 10^7 s. Compute the orbital periods of bodies orbiting the Sun with each of the following semi-major axes. a) a = 0.1 AU b) a = 10 AU c) a = 100 AU d) a = 1000 AU e) a = 10,000 AU 1 AU = 1.496 x 10^8 km = 1.496 x 10^11 m = 1.496 x 10^13 cm. GM(sun) = 1.327 x 10^20 m^3/s^2 = (Newton's Constant) x (Mass of Sun) %3D %3Darrow_forwardMust engineers take Earth’s rotation into account when constructing very tall buildings at any location other than the equator or very near the poles?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY