The Cosmic Perspective (8th Edition)
8th Edition
ISBN: 9780134059068
Author: Jeffrey O. Bennett, Megan O. Donahue, Nicholas Schneider, Mark Voit
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 47EAP
Faster Trip. Suppose you wanted to reach Alpha Centauri in 100 years.
a. How fast would you have to go, in km/hr? b. How many times faster is the speed you found in part a than the speed of our fastest current spacecraft (around 50,000 km/hr)?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Cruise Ship Enery. Suppose we have a spaceship about the size of a typical ocean cruise ship today, which means it has a mass of about l00 million kilograms, and we want to accelerate the ship to a speed of 10% of the speed of light.
a. How Inuch energy would be required? (Hint; You can find the answer simply by calculating the kinetic energy of the ship when it reaches its cruising speed; because 10% of the speed of light is still small compared to the speed of light, you can use thsi formula kinetic energy = 1/2 x m x v2)
b. How does your answer coInpare to total world energy use 5 x 1022 Joules?
c. The typical cost of energy today is roughly 5¢ per 1 million joules. At this price, how much would it cost to generate the energy needed by this spaceship?
Astronomers use a light-year to measure distance. A light-year is the distance light travels in one year. The speed of light is approximately 300,000 km/sec.a. How long is 1 light-year in kilometers?b. The nearest star (other than the sun) is Alpha Centauri. It is 4.34 light-years from Earth. How far is that in kilometers?c. How long will it take a rocket traveling 42,000 km/hr to reach Alpha Centauri?
Suppose you're in a circular orbit around Saturn (M = 5.683 x 1026 kg) with a semi-major axis
of a = 237,948 km.
a. What is your orbital velocity?
b. Using the "Vis-viva" equation (which can be derived from the total energy)
v = GM
What is the delta-V you would need to get from your current orbit, into an elliptical orbit
that has an apoapsis near Titan (a = 1,221,870 km)?
Chapter 1 Solutions
The Cosmic Perspective (8th Edition)
Ch. 1 - Prob. 1VSCCh. 1 - Prob. 2VSCCh. 1 - Prob. 3VSCCh. 1 - Prob. 4VSCCh. 1 - Prob. 1EAPCh. 1 - Define astronomical unit and light-year.Ch. 1 - Explain the statement “The farther away we look in...Ch. 1 - Prob. 4EAPCh. 1 - Prob. 5EAPCh. 1 - What do we mean when we say that the universe is...
Ch. 1 - In what sense are we “star stuff”?Ch. 1 - Use the cosmic calendar to describe how the human...Ch. 1 - Briefly explain Earth’s daily rotation and annual...Ch. 1 - Briefly describe our solar system’s location and...Ch. 1 - Prob. 11EAPCh. 1 - Prob. 12EAPCh. 1 - Prob. 13EAPCh. 1 - Does it Make Sense? Decide whether the statement...Ch. 1 - Prob. 15EAPCh. 1 - Prob. 16EAPCh. 1 - Prob. 17EAPCh. 1 - Prob. 18EAPCh. 1 - Prob. 19EAPCh. 1 - Prob. 20EAPCh. 1 - Prob. 21EAPCh. 1 - Prob. 22EAPCh. 1 - Which of the following correctly lists our ‘cosmic...Ch. 1 - An astronomical unit is (a) any planet’s average...Ch. 1 - The star Betelgeuse is about 600 light-years away....Ch. 1 - Prob. 26EAPCh. 1 - The total number of stars in the observable...Ch. 1 - Prob. 28EAPCh. 1 - Prob. 29EAPCh. 1 - Prob. 30EAPCh. 1 - Prob. 31EAPCh. 1 - Prob. 32EAPCh. 1 - Prob. 33EAPCh. 1 - Thinking About Scale. One key to success in...Ch. 1 - Prob. 35EAPCh. 1 - Prob. 36EAPCh. 1 - Prob. 37EAPCh. 1 - Prob. 38EAPCh. 1 - Prob. 39EAPCh. 1 - Prob. 40EAPCh. 1 - Prob. 41EAPCh. 1 - Spacecraft Communication. We use radio waves,...Ch. 1 - Prob. 43EAPCh. 1 - Prob. 44EAPCh. 1 - Prob. 45EAPCh. 1 - Driving Trips. Imagine that you could drive your...Ch. 1 - Faster Trip. Suppose you wanted to reach Alpha...Ch. 1 - Prob. 48EAPCh. 1 - Earth Rotation Speed. Mathematical Insight 1.3...Ch. 1 - Prob. 50EAPCh. 1 - Prob. 51EAPCh. 1 - Prob. 52EAPCh. 1 - Prob. 53EAPCh. 1 - Prob. 54EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Milestone A: Walk 3.2 km (~2 miles) towards northeast. Milestone B: Walk 1.3 km towards southeast. Milestone C: Walk 2.4 km directly south. Surprise at the end! You have arrived at the treasure! Distance: What is the total distance traveled if you walk the distance A, B, C? Give your answer in km and miles. 2. Direction: a. what is meant by “north east?” b. what direction would this be on a cartesian coordinate system? c. What is meant by “south east?” d. What direction would this be on a cartesian coordinate system? e. What about “south”? f. What direction on cartesian coordinate system? 3. Draw the diagram: include drawing the resultant a. What does the resultant vector represent? 4. Calculate: use trigonometry to find the displacement.arrow_forwardA star of mass 7x 100 kg is located at m and is moving with a velocity of 1.3x10, 1.1 x 10,0 m/s. Part 1 Your answer is partially correct. (a) During a time interval of 1 x 10 seconds, what is the change in the planet's velocity? i21.2258002 -21.2258002 > m/sarrow_forwardThe international space station (ISS) orbits 400 km above Earth's surface at 7.66 km/s (17,100 mph). Suppose the ISS is moved to 400 km above Mars. 1. To maintain its orbit above Mars, will the ISS have to move faster or slower that its orbital speed around Earth? Justify your answer. 2. Will astronauts on the ISS feel lighter, heavier, or no change at all while in orbit around Mars. Explain your answer.arrow_forward
- Suppose we look at two distant galaxies: Galaxy 1 is twice as far away as Galaxy 2. In this case, A. Galaxy 1 must be twice as big as Galaxy 2. B. we are seeing Galaxy 1 as it looked at an earlier time in the history of the universe than Galaxy 2. C. we are seeing Galaxy 1 as it looked at a later time in the history of the universe than Galaxy 2. D. Galaxy 2 must be twice as old as Galaxy 1.arrow_forwardA light-year is the distance that light can travel in one year. Similarly, we can define a light-second, light-day, etc. as the distance that light can travel in other time intervals. Calculate the distance represented by each of the following: (Assume that the speed of light is 3 x 108 m/s)A. 4 light-seconds.B. [3pt] 4 light-minutes.C. 4 light-days.D. 4 light-days, but this time answer in miles (enter just the number with no units)arrow_forwardWhich of the following statements could be considered scientific statements ? 1. There is water on the surface of Mars. 2. The universe contains atoms we will never detect. It is wrong to cheat. O A. C. 1 2, and 3 are all scientific B. None of the statements is scientific OC.A. Only 1 is scientific () D. B. 1 and 2 are scientificarrow_forward
- I’ve gotten 3 different answers each time I’ve worked #4 out. I have no idea what to do.arrow_forwardI am trying to calculate the gravitational mass (in solar masses) I have the formula M= V^2 R / G (4.31 x 10^-6) The paperwork says our numbers should be big but I am coming up with .002 etc. What am I doing wrong?arrow_forwardGMm F, r2 F(r = R) The surface gravity g of a body is. The acceleration due to gravity that an object m would feel on the surface of the body. A. Show that the surface gravity of Earth is ge = 9.8 m/s². B. Determine the surface gravity of the Sun. C. Determine the surface gravity of the Sun when it becomes a red giant star, assuming RG 1 AU. Use this answer to explain the significant mass loss rates observed in these objects.arrow_forward
- In an intergalactic competition, spaceship pilots compete to see who can cover the distance between two asteroids in the shortest time. The judges are at rest with respect to the two asteroids. From the judges’ point of view, a pilot has covered the 3-millionkm course in 20 seconds. From the pilots’ point of view,A. The course is longer than 3 million km, the time longer than 20 seconds.B. The course is longer than 3 million km, the time shorter than 20 seconds.C. The course is shorter than 3 million km, the time longer than 20 seconds.D. The course is shorter than 3 million km, the time shorter than 20 seconds.arrow_forwardProblem 1. Mass-Energy conversion in the Sun (Palen, et. al. 3rd Edition, Chapter 11, problems 38, 39) The Sun produces energy by converting mass m into energy E according to E = mc2 where c is the speed of light (c = 300,000 km/sec). Show that if the Sun produces 3.85 × 1026 joules (J) of energy per second, it must convert 4.3 billion kg of mass per second into energy. Note that 1 J/s is a watt (W), which may be more familiar to you. How much mass has the Sun lost over its lifetime (4.5 billion years)? The current mass of the Sun is 2 × 1030. What fraction of this mass has been converted into energy during the Sun’s lifetime?arrow_forward. With the mass of earth as 5.9722×10 to the 24 kg. and the mass of the moon is 7.38 x10 to the 22kg.with a distance of 384790km a. what is the gravitational pull between the two objects? b. what happens to gravitational pull if you reduced the distance into 1/2?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY