The Cosmic Perspective (8th Edition)
8th Edition
ISBN: 9780134059068
Author: Jeffrey O. Bennett, Megan O. Donahue, Nicholas Schneider, Mark Voit
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 1, Problem 34EAP
Thinking About Scale. One key to success in science is finding simple ways to evaluate new ideas, and making a simple scale model is often helpful. Suppose someone tells you that the reason it is warmer during the day than at night is that the day side of Earth is closer to the Sun than the night side. Evaluate this idea by thinking about the size of Earth and its distance from the Sun in a scale model of the solar system.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
We need to create a scale model of the solar system (by shrinking the sun down to the size of a basketball or ~30cm). First, we will need to scale down actual solar system dimensions (planet diameters and average orbital radiuses) by converting our units. There are two blank spaces in the table below. We will effectively fill in the missing data in the next set of questions. Use the example below to help you.
Example: What is the scaled diameter of Mercury if the Sun is scaled to the size of a basketball (30 cm)?
The actual diameter of Mercury is 4879 km
The Sun's diameter is 1392000 km
If the Sun is to be reduced to the size of a basketball, then the conversion we need for this equation will be:
30cm1392000km
Here is how we run the conversion: 4879km×30cm1392000km=0.105cm or 0.11cm if we were to round our answer.
This means that if the sun in our model is the size of a basketball, Mercury is the size of a grain of sand. We can also see by looking at the table, that we would…
At present there are 8 planets in the solar system. In the early models, there were only 6 planets. What is the reason behind this?
Describe a model of the modern solar system in terms of the number of planets, their arrangement and the model’s center.
Read this main idea: The sun is the center of our solar system. Choose three details that go with the main idea.
The sun's gravity holds the planets in place. It provides them with heat and light.
The largest stars, called supergiants, are 1,500 times bigger than our sun.
It takes Earth 365 days to orbit the sun. Jupiter takes 12 years!
Our sun is not the largest or hottest star. It is a medium sized yellow star.
Radio telescopes use radio waves to show stars in great detail.
Astronomers long ago and today use star charts to map star locations.
All of the planets in our solar system revolve around one star-our sun.
Stars can be blue, white, yellow, or red. Blue stars are the hottest.
A reflector telescope bounces star light through mirrors.
Chapter 1 Solutions
The Cosmic Perspective (8th Edition)
Ch. 1 - Prob. 1VSCCh. 1 - Prob. 2VSCCh. 1 - Prob. 3VSCCh. 1 - Prob. 4VSCCh. 1 - Prob. 1EAPCh. 1 - Define astronomical unit and light-year.Ch. 1 - Explain the statement “The farther away we look in...Ch. 1 - Prob. 4EAPCh. 1 - Prob. 5EAPCh. 1 - What do we mean when we say that the universe is...
Ch. 1 - In what sense are we “star stuff”?Ch. 1 - Use the cosmic calendar to describe how the human...Ch. 1 - Briefly explain Earth’s daily rotation and annual...Ch. 1 - Briefly describe our solar system’s location and...Ch. 1 - Prob. 11EAPCh. 1 - Prob. 12EAPCh. 1 - Prob. 13EAPCh. 1 - Does it Make Sense? Decide whether the statement...Ch. 1 - Prob. 15EAPCh. 1 - Prob. 16EAPCh. 1 - Prob. 17EAPCh. 1 - Prob. 18EAPCh. 1 - Prob. 19EAPCh. 1 - Prob. 20EAPCh. 1 - Prob. 21EAPCh. 1 - Prob. 22EAPCh. 1 - Which of the following correctly lists our ‘cosmic...Ch. 1 - An astronomical unit is (a) any planet’s average...Ch. 1 - The star Betelgeuse is about 600 light-years away....Ch. 1 - Prob. 26EAPCh. 1 - The total number of stars in the observable...Ch. 1 - Prob. 28EAPCh. 1 - Prob. 29EAPCh. 1 - Prob. 30EAPCh. 1 - Prob. 31EAPCh. 1 - Prob. 32EAPCh. 1 - Prob. 33EAPCh. 1 - Thinking About Scale. One key to success in...Ch. 1 - Prob. 35EAPCh. 1 - Prob. 36EAPCh. 1 - Prob. 37EAPCh. 1 - Prob. 38EAPCh. 1 - Prob. 39EAPCh. 1 - Prob. 40EAPCh. 1 - Prob. 41EAPCh. 1 - Spacecraft Communication. We use radio waves,...Ch. 1 - Prob. 43EAPCh. 1 - Prob. 44EAPCh. 1 - Prob. 45EAPCh. 1 - Driving Trips. Imagine that you could drive your...Ch. 1 - Faster Trip. Suppose you wanted to reach Alpha...Ch. 1 - Prob. 48EAPCh. 1 - Earth Rotation Speed. Mathematical Insight 1.3...Ch. 1 - Prob. 50EAPCh. 1 - Prob. 51EAPCh. 1 - Prob. 52EAPCh. 1 - Prob. 53EAPCh. 1 - Prob. 54EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How do we know? How does the scientific method give scientists a way to know about nature?arrow_forwardHow Do We Know? How can a scientific model be useful if it is not a true description of nature?arrow_forwardAs we discuss in class, the radius of the Earth is approximately 6370 km. Theradius of the Sun, on the other hand, is approximately 700,000 km. The Sun is located,on average, one astronomical unit (1 au) from the Earth. Imagine that you stand near Mansueto Library, at the corner of 57th and Ellis.Mansueto’s dome is 35 feet (10.7 meters) high. Let’s imagine we put a model of theSun inside the dome, such that it just fits — that is, the model Sun’s diameter is 35 feet The nearest star to the Solar System outside of the Sun is Proxima Centauri,which is approximately 4.2 light years away. Given the scale model outlined above,how far would a model Proxima Centauri be placed from you? Give your answer inmiles and kmarrow_forward
- Suppose you were given a 3 in diameter ball to represent the Earth and a 1 in diameter ball to represent the Moon. (The actual ratio of Earth diameter to Moon diameter is 3.7 to 1.) The actual average Earth–Moon distance is about 384,000 kilometers, and Earth’s diameter is about 12,800 kilometers. How many “Earth diameters” is the distance from Earth to the Moon? Based on your answer to Question 2, what is the correct scaled distance of the Moon, using the 3-inch ball as Earth? The Sun’s actual diameter is about 1,400,000 kilometers. How many “Earth diameters” is this? Given your 3-inch Earth, how large (i.e what diameter) of a ball would you need to represent the Sun? Give your answer in feet. The average Earth–Sun distance is about 149,600,000 km. To represent this distance to scale, how far away would you have to place your 3-inch Earth from your Sun? Give your answer in feet. Could we use this scale to visualize the solar system instead of just the Earth and Moon? Why or Why…arrow_forwardQ1arrow_forwardUsing the GUFSA Template. Round off your final answer to the nearest hundredths. As we already know, rockets travel at very high speeds. How much time will it take a rocket (in seconds) to reach the moon if the moon is 238,900 miles away from the Earth, and the rocket is travelling 1,800,000 centimeters per minute? (express your answer in meters per second)arrow_forward
- Answer it correctly please. Explain your answer. I will rate accordingly with multiple votes.arrow_forwardI need the answer for question 4arrow_forwardOxygen Atoms in People. Figure 5.7 shows that oxygen makes up about 65% of the mass of a human being. A single oxygen atom has a mass of 2.66 × 10−26 kg. (a) Use this fact to estimate the number of oxygen atoms in your body. (Hint: If you know your weight in pounds, you can convert to kilograms by dividing by 2.2.) (b) Compare your answer to the number of stars in the observable universe (which is roughly 1022).arrow_forward
- Direction: Use your knowledge about solving equations to work out to complete the table below. Show your solution with proper units. R° (meters) T R° / T° { (meters) / Planet Average Times of Radius of Revolution (seconds) (seconds) } Planet's Orbit (Planet's year) R T (seconds) (meters) Mercury 5.7869 x 10:0 7.605 x 10 Venus 1.081 x 101 1.941 x 107 Earth 1.4996 x 10" 3.156 x 10 Mars 2.280 x 101 5.936 x 10 Jupiter 7.783 x 10" 3.743 x 10 Saturn 1.426 x 10 9.296 x 10arrow_forwardA new social media fad claims that babies born under a new Moon (the so called newmies) develop into students that do better in school than children that were born under different lunar phases. Describe how this idea does or does not align with each of the three hallmarks of science. Is the idea of academic superiority for newmies falsifiable? How could you test the newmie conjecture ?arrow_forwardImpact Energy. Consider a comet about 2 kilometers across with a mass of 4 × 1012 kg. Assume that it crashes into Earth at a speed of 30,000 meters per second (about 67,000 miles per hour). a. What is the total energy of the impact, in joules? (Hint: The kinetic energy formula tells us that the impact energy in joules will be 1 × m × v2, where 2 m is the comet’s mass in kilograms and v is its speed in meters per second.) b. A 1-megaton nuclear explosion releases about 4 × 1015 joules of energy. How many such nuclear bombs would it take to release as much energy as the comet impact? c. Based on your answers, comment on the degree of devastation the comet might cause.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY