21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
6th Edition
ISBN: 9780393874921
Author: PALEN
Publisher: Norton, W. W. & Company, Inc.
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 1, Problem 45QP
(a)
To determine
The circumference of the Earth orbit around the Sun.
(b)
To determine
The speed of Earth moves in its orbit.
(c)
To determine
The distance Earth moves in
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A newly discovered planet orbits a star with the same mass as the Sun with a semi-major axis of 239.36 million kilometers. Its orbital eccentricity is 0.1.A. Find the planet's orbital period.B. Find the planet's perihelion distance.C. Find the planet's aphelion distance.
Mars has an orbital radius of 1.523 AU and an orbital period of 687.0 days. What is its average speed v in SI units? (1 AU is the astronomical unit, the mean distance between the Sun and the Earth, which is 1.496×1011 m)
a. 0.00221 AU/day
b. 3838 m/s
c. 0
d. 1.28×10−9 m/s
8. The mean distance of Earth from the Sun is 149.6 x 10° km and the mean distance of
Mercury from the Sun is 57.9 x 10° km. The period of Earth's revolutions is 1 year,
what is the period of Mercury's revolution?
a. 0.24 year on Earth
b. 0.42 year on Earth
C. 1.13 year on Earth
d. 1.31 year on Earth
9. The planet Delta has 2 times the gravitational field strength and 3 times the radius of
Earth. How does the mass of the planet Delta compare with the mass of Earth?
Chapter 1 Solutions
21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
Ch. 1.1 - Prob. 1.1CYUCh. 1.2 - Prob. 1.2CYUCh. 1.3 - Prob. 1.3CYUCh. 1 - Prob. 1QPCh. 1 - Prob. 2QPCh. 1 - Prob. 3QPCh. 1 - Prob. 4QPCh. 1 - Prob. 5QPCh. 1 - Prob. 6QPCh. 1 - Prob. 7QP
Ch. 1 - Prob. 8QPCh. 1 - Prob. 9QPCh. 1 - Prob. 10QPCh. 1 - Prob. 11QPCh. 1 - Prob. 12QPCh. 1 - Prob. 13QPCh. 1 - Prob. 14QPCh. 1 - Prob. 15QPCh. 1 - Prob. 16QPCh. 1 - Prob. 17QPCh. 1 - Prob. 18QPCh. 1 - Prob. 19QPCh. 1 - Prob. 20QPCh. 1 - Prob. 21QPCh. 1 - Prob. 22QPCh. 1 - Prob. 23QPCh. 1 - Prob. 24QPCh. 1 - Prob. 25QPCh. 1 - Prob. 26QPCh. 1 - Prob. 27QPCh. 1 - Prob. 28QPCh. 1 - Prob. 29QPCh. 1 - Prob. 30QPCh. 1 - Prob. 31QPCh. 1 - Prob. 32QPCh. 1 - Prob. 33QPCh. 1 - Prob. 34QPCh. 1 - Prob. 35QPCh. 1 - Prob. 36QPCh. 1 - Prob. 37QPCh. 1 - Prob. 38QPCh. 1 - Prob. 39QPCh. 1 - Prob. 40QPCh. 1 - Prob. 41QPCh. 1 - Prob. 42QPCh. 1 - Prob. 43QPCh. 1 - Prob. 44QPCh. 1 - Prob. 45QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- When Sedna was discovered in 2003, it was the most distant object known to orbit the Sun. Currently, it is moving toward the inner solar system. Its period is 10,500 years. Its perihelion distance is 75 AU. a. What is its semimajor axis in astronomical units? b. What is its aphelion distance?arrow_forwardAccording to the National Academy of Sciences, the Earths surface temperature has risen about 1F since 1900. There is evidence that this climate change may be due to human activity. The organizers of World Jump Day argue that if the Earth were in a slightly larger orbit, we could avoid global warming and climate change. They propose that we move the Earth into this new orbit by jumping. The idea is to get people in a particular time zone to jump together. The hope is to have 600 million people jump in a 24-hour period. Lets see if it will work. Consider the Earth and its inhabitants to make up the system. a. Estimate the number of people in your time zone. Assume they all decide to jump at the same time; estimate the total mass of the jumpers. b. What is the net external force on the Earthjumpers system? c. Assume the jumpers use high-tech Flybar pogo sticks (Fig. P8.32), which allow them to jump 6 ft. What is the displacement of the Earth as a result of their jump? d. What happens to the Earth when the jumpers land?arrow_forwardWhat, on a sphere, is analogous to a two-dimensional Cartesian coordinate system?arrow_forward
- Astronomical observatrions of our Milky Way galaxy indicate that it has a mass of about 8.01011 solar masses. A star orbiting on the galaxy’s periphery is about 6.0104 light-years from its center. (a) What should the orbital period of that star be? (b) If its period is 6.0107 years instead, what is the mass of the galaxy? Such calculations are used to imply the existence of other matter, such as a very massive black hole at the center of the Milky Way.arrow_forwardSolve the following problems. Because Earth is rotating around its axis, objects on its surface have radial acceleration. Take note that the radius of the Earth is 6,380 km and Earth rotates around its axis in 24 hours. a. What is the radial acceleration of an object at Earth's equator in m/s? b. What is the radial acceleration for an object at 20-degree latitude? c. Express your answers in parts (a) and (b) as a fraction of acceleration due to gravity, g. Using these values, explain why objects on Earth's surface are not thrown off into space.arrow_forwardThe Hubble space telescope orbits Earth with an orbital speed of 7.6×103m/s. A. Calculate its altitude above Earth's surface. B. What is its period?arrow_forward
- mass of 5.98 x 1024 kg. The radius of Earth 11. Sally has a mass of 50.0 kg and Earth has a mass of 5.98 × 10 kg. The radius of Earth is 6.371 x 10 m. a. What is the force of gravitational attraction between Sally and Earth? b. What is Sally's weight?arrow_forward2arrow_forward25. The mean distance of Earth from the Sun is 149.6 x 10° km and the mean distance of Mercury from the Sun is 57.9 x 106 km. The period of Earth's revolutions is 1 year, what is the period of Mercury's revolution? a. 0.24 year on Earth b. 0.42 year on Earth C. 1.13 year on Earth d. 1.31 year on Eartharrow_forward
- Newton's Law of Gravitation 2. The magnitude of the acceleration of an object under the pull of Earth's gravity is given by Newton's Universal Law of Gravitation МЕ a = G R? where G is the universal gravitational constant, ME is the mass of Earth, and R is the distance of the object from the center of Earth. Let x be the distance above Earth's surface. We can rewrite the formula for the acceleration as a function of x by noting that R = Rp + x, where Rp is the radius of Earth. Therefore, МЕ a(x) = G- (RE + x)2 d. (a) Show that dx 1 1 (1 – x)* - x. (b) Use the above fact, along with the power series of 1 to determine a power 1- x 1 series for (1+x)²* (c) What is the radius of convergence for the series in part (b)? (Hint: You do not need to calculate anything. What is the radius of convergence for the power series of 1 does not change the radius of convergence.) -? This series has the same radius of convergence since taking a derivativearrow_forward010: A new planet (tentatively named "Melmac") is found in a circular orbit with a period of 571 years. The sun has a mass of 1.9891x1030 kg. How far away is the planet in Astronomical Units (AU) ? Note: An A.U. is 1.496x1011 m.arrow_forwardThe mass of a new discovered planet is 6.39 × 10^23kg. If the weight of a spaceship from earth that landed on this new discovered planet weighs 3000 N on this planet and weighs 7,930.477 N on earth, what is the radius of this planet (the center of gravity of the spaceship is not to be considered).a. R = 4.6532 kmb. R = 6.5634 kmc. R = 3.3897 kmd. R = 8.5443 kmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY