EBK COMPUTER SCIENCE
EBK COMPUTER SCIENCE
13th Edition
ISBN: 8220106892572
Author: BRYLOW
Publisher: PEARSON
Expert Solution & Answer
Book Icon
Chapter 1, Problem 36CRP

a.

Explanation of Solution

Decode 01011001 using the floating point format described in figure 1.24:

The rules of the floating format is,

  • The high order bit of the binary number is the sign bit. 0 is assigned as positive and 1 is assigned as negative.
  • The four bits from the right are assigned as mantissa field.
  • The remaining three bits represent the exponential field that is shown in the below table.
Bit patternvalue
1113
1102
1011
1000
0111
1012
0013
0004
  • Apply the above rules to the bit pattern 01011001.
  • The mantissa field of the given binary number is .1001, shift 1 bit to the left of the decimal point then the exponential field 001 represents 1 by follow the above table.. the number becomes 1.001
  • Convert the number 1 into base ten representation

b.

Explanation of Solution

Decode 11001000 using the floating point format described in figure 1.24:

The rules of the floating format is,

  • The high order bit of the binary number is the sign bit. 0 is assigned as positive and 1 is assigned as negative.
  • The four bits from the right are assigned as mantissa field.
  • The remaining three bits represent the exponential field that is shown in the below table.
Bit patternvalue
1113
1102
1011
1000
0111
1012
0013
0004
  • Apply the above rules to the bit pattern 11001000.
  • The mantissa field of the given binary number is .1000, shift 1 bit to the left of the decimal point then the exponential field is 100 represents 0 by follow the above table.. then there is no need to shift the bit number and the number becomes 0

c.

Explanation of Solution

Decode 10101100 using the floating point format described in figure 1.24:

The rules of the floating format is,

  • The high order bit of the binary number is the sign bit. 0 is assigned as positive and 1 is assigned as negative.
  • The four bits from the right are assigned as mantissa field.
  • The remaining three bits represent the exponential field that is shown in the below table.
Bit patternvalue
1113
1102
1011
1000
0111
1012
0013
0004
  • Apply the above rules to the bit pattern 10101100.
  • The mantissa field of the given binary number is .1100, shift 2 bit to the left of the decimal point then the exponential field 010 represents 2  by follow the above table. The number becomes 0.001100
  • Convert the number 0.001100 into binary representation.

d.

Explanation of Solution

Decode 00111001 using the floating point format described in figure 1.24:

The rules of the floating format is,

  • The high order bit of the binary number is the sign bit. 0 is assigned as positive and 1 is assigned as negative.
  • The four bits from the right are assigned as mantissa field.
  • The remaining three bits represent the exponential field that is shown in the below table.
Bit patternvalue
1113
1102
1011
1000
0111
1012
0013
0004
  • Apply the above rules to the bit pattern 00111001.
  • The mantissa field of the given binary number is .1001, shift 1 to the left of the decimal point then the exponential field 011 represents 1  by follow the above table. then  number becomes 0.01001
  • Convert the number 0

Blurred answer
Students have asked these similar questions
I need fixing my a matlab code to find the currents USING MARTIXS AND INVERSE to find the current % At this point We Enter the Resistor values and Voltage Source Values fprintf('Provide Resistance Values for the Resistors as Requested: \n'); fprintf('===============================================\n'); R1x = input('Enter the value for R1 in kohms: '); R2x = input('Enter the value for R2 in kohms: '); R3x = input('Enter the value for R3 in kohms: '); R4x = input('Enter the value for R4 in kohms: '); fprintf('Provide voltage values for as requested: \n'); fprintf('===============================================\n'); E1 = input('Enter the value of E1 in Volts: '); E2 = input('Enter the value of E2 in Volts: '); E3 = input('Enter the value of E3 in Volts: '); fprintf('===============================================\n'); % Scaling FACTOR multiplication of resistors by 1000 (1K) each R1 = 1000 * R1x; R2 = 1000 * R2x; R3 = 1000 * R3x; R4 = 1000 * R4x; fprintf('VALUES YOU HAVE ENTERED FOR YOUR…
Suppose that the two Rank methods below are added to the Skip List class on Blackboard. public int Rank(T item) Returns the rank of the given item. public T Rank(int i) Returns the item with the given rank i. Requirements 1. Describe in a separate Design Document what additional data is needed and how that data is used to support an expected time complexity of O(log n) for each of the Rank methods. Show as well that the methods Insert and Remove can efficiently maintain this data as items are inserted and removed. (7 marks) 2. Re-implement the methods Insert and Remove of the Skip List class to maintain the augmented data in expected O(log n) time. Using the Contains method, ensure that added items are distinct. (6 marks) 3. Implement the two Rank methods. (8 marks) 4. Test your new methods thoroughly. Include your test cases and results in a Test Document. (4 marks)
Why do we need official standards for copper cable and fiber-optic cable? What happens without the standard?

Chapter 1 Solutions

EBK COMPUTER SCIENCE

Ch. 1.3 - Prob. 1QECh. 1.3 - Prob. 2QECh. 1.3 - Prob. 3QECh. 1.3 - Prob. 4QECh. 1.3 - Prob. 5QECh. 1.3 - Prob. 6QECh. 1.4 - Here is a message encoded in ASCII using 8 bits...Ch. 1.4 - In the ASCII code, what is the relationship...Ch. 1.4 - Prob. 3QECh. 1.4 - Prob. 4QECh. 1.4 - Convert each of the following binary...Ch. 1.4 - Prob. 6QECh. 1.4 - What is the largest numeric value that could be...Ch. 1.4 - An alternative to hexadecimal notation for...Ch. 1.4 - What is an advantage of representing images via...Ch. 1.4 - Prob. 10QECh. 1.5 - Convert each of the following binary...Ch. 1.5 - Convert each of the following base ten...Ch. 1.5 - Convert each of the following binary...Ch. 1.5 - Express the following values in binary notation:...Ch. 1.5 - Perform the following additions in binary...Ch. 1.6 - Convert each of the following twos complement...Ch. 1.6 - Prob. 2QECh. 1.6 - Suppose the following bit patterns represent...Ch. 1.6 - Suppose a machine stores numbers in twos...Ch. 1.6 - In the following problems, each bit pattern...Ch. 1.6 - Prob. 6QECh. 1.6 - Prob. 7QECh. 1.6 - Prob. 8QECh. 1.6 - Prob. 9QECh. 1.6 - Prob. 10QECh. 1.6 - Prob. 11QECh. 1.7 - Prob. 1QECh. 1.7 - Prob. 3QECh. 1.7 - Prob. 4QECh. 1.8 - What makes Python an interpreted programming...Ch. 1.8 - Write Python statements that print the following:...Ch. 1.8 - Write Python statements to make the following...Ch. 1.8 - Write a Python statement that given an existing...Ch. 1.9 - Prob. 1QECh. 1.9 - Prob. 2QECh. 1.9 - Prob. 3QECh. 1.9 - Prob. 4QECh. 1.9 - Prob. 5QECh. 1.9 - Prob. 6QECh. 1.9 - Prob. 7QECh. 1.10 - Prob. 1QECh. 1.10 - Could errors have occurred in a byte from Question...Ch. 1.10 - Prob. 3QECh. 1.10 - Prob. 4QECh. 1.10 - Prob. 5QECh. 1.10 - Prob. 6QECh. 1 - Determine the output of each of the following...Ch. 1 - a. What Boolean operation does the circuit...Ch. 1 - a. If we were to purchase a flip-flop circuit from...Ch. 1 - Assume that both of the inputs in the following...Ch. 1 - The following table represents the addresses and...Ch. 1 - How many cells can be in a computers main memory...Ch. 1 - Prob. 7CRPCh. 1 - Prob. 8CRPCh. 1 - Prob. 9CRPCh. 1 - Prob. 10CRPCh. 1 - Suppose a picture is represented on a display...Ch. 1 - Prob. 12CRPCh. 1 - Prob. 13CRPCh. 1 - If each sector on a magnetic disk contains 1024...Ch. 1 - How many bytes of storage space would be required...Ch. 1 - Prob. 16CRPCh. 1 - Prob. 17CRPCh. 1 - Suppose a typist could type 60 words per minute...Ch. 1 - Prob. 19CRPCh. 1 - Prob. 20CRPCh. 1 - Prob. 21CRPCh. 1 - Prob. 22CRPCh. 1 - Prob. 23CRPCh. 1 - Prob. 24CRPCh. 1 - Prob. 25CRPCh. 1 - Prob. 26CRPCh. 1 - Prob. 27CRPCh. 1 - Prob. 28CRPCh. 1 - Prob. 29CRPCh. 1 - Prob. 30CRPCh. 1 - Prob. 31CRPCh. 1 - Prob. 32CRPCh. 1 - Prob. 33CRPCh. 1 - Prob. 34CRPCh. 1 - Prob. 35CRPCh. 1 - Prob. 36CRPCh. 1 - Prob. 37CRPCh. 1 - Prob. 38CRPCh. 1 - Prob. 39CRPCh. 1 - Prob. 40CRPCh. 1 - Prob. 41CRPCh. 1 - Prob. 42CRPCh. 1 - Prob. 43CRPCh. 1 - Prob. 44CRPCh. 1 - Prob. 45CRPCh. 1 - What would be the hexadecimal representation of...Ch. 1 - Prob. 47CRPCh. 1 - Prob. 48CRPCh. 1 - Prob. 49CRPCh. 1 - Prob. 50CRPCh. 1 - Prob. 51CRPCh. 1 - Prob. 52CRPCh. 1 - Prob. 53CRPCh. 1 - Prob. 54CRPCh. 1 - Prob. 55CRPCh. 1 - Prob. 56CRPCh. 1 - Prob. 57CRPCh. 1 - Prob. 58CRPCh. 1 - Write and test a Python script that, given a...Ch. 1 - Prob. 61CRPCh. 1 - Prob. 2SICh. 1 - Prob. 3SICh. 1 - Prob. 4SICh. 1 - Prob. 5SICh. 1 - Prob. 6SICh. 1 - Prob. 7SI
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning
Text book image
A+ Guide to Hardware (Standalone Book) (MindTap C...
Computer Science
ISBN:9781305266452
Author:Jean Andrews
Publisher:Cengage Learning
Text book image
A+ Guide To It Technical Support
Computer Science
ISBN:9780357108291
Author:ANDREWS, Jean.
Publisher:Cengage,
Text book image
CompTIA Linux+ Guide to Linux Certification (Mind...
Computer Science
ISBN:9781305107168
Author:Jason Eckert
Publisher:Cengage Learning
Text book image
Comptia A+ Core 1 Exam: Guide To Computing Infras...
Computer Science
ISBN:9780357108376
Author:Jean Andrews, Joy Dark, Jill West
Publisher:Cengage Learning
Text book image
Enhanced Discovering Computers 2017 (Shelly Cashm...
Computer Science
ISBN:9781305657458
Author:Misty E. Vermaat, Susan L. Sebok, Steven M. Freund, Mark Frydenberg, Jennifer T. Campbell
Publisher:Cengage Learning