Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 1, Problem 31CQ
To determine
The major factor limiting the use of single crystal gas turbine blades.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
At a temperature of 60°F, a 0.04-in. gap exists between the ends of the two bars shown. Bar (1) is an aluminum alloy [E = 10,000 ksi; v = 0.32; a = 12.5 x 10-6/°F] bar
with a width of 3.0 in. and a thickness of 0.75 in. Bar (2) is a stainless steel [E = 28,000 ksi; v = 0.12; a = 9.6 x 10-6/°F] bar with a width of 2.0 in. and a thickness of
0.75 in. The supports at A and C are rigid. Determine
(a) the lowest temperature at which the two bars contact each other.
(b) the normal stress in the two bars at a temperature of 250°F.
(c) the normal strain in the two bars at 250°F.
(d) the change in width of the aluminum bar at a temperature of 250°F.
(1)
3.0 in.
32 in.
2.0 in.
B ↓
(2)
44 in.
0.04-in. gap
Determine the lowest temperature, Tcontact, at which the two bars contact each other.
materials absorb shock or energy and they give warning prior to failure.
a. Ductile
O b. Concrete
O c. inorganic materials
O d. Brittle
At a temperature of 60°F, a 0.04-in. gap exists between the ends of the two bars shown. Bar (1) is an aluminum alloy [E = 10,000 ksi; v =
0.32; a = 12.7 x 10-6/°F] bar with a width of 3 in. and a thickness of 0.75 in. Bar (2) is a stainless steel [E = 28,000 ksi; v = 0.12; a = 8.6 x
10-6/°F] bar with a width of 2 in. and a thickness of 0.75 in. The supports at A and C are rigid. Determine the lowest temperature at
which the two bars contact each other.
(1)
3 in.
32 in.
90.2°F
O 69.9°F
139.2°F
103.5°F
O 111.0°F
B
↑
2 in.
↓
44 in.
-0.04-in. gap
Chapter 1 Solutions
Materials Science And Engineering Properties
Ch. 1 - Prob. 1CQCh. 1 - Prob. 2CQCh. 1 - Prob. 3CQCh. 1 - Prob. 4CQCh. 1 - Alumina (A12O3) is a(n) _________ material.Ch. 1 - Prob. 6CQCh. 1 - Prob. 7CQCh. 1 - Prob. 8CQCh. 1 - Prob. 9CQCh. 1 - Prob. 10CQ
Ch. 1 - Prob. 11CQCh. 1 - Prob. 12CQCh. 1 - Prob. 13CQCh. 1 - Prob. 14CQCh. 1 - Prob. 15CQCh. 1 - Prob. 16CQCh. 1 - Prob. 17CQCh. 1 - Prob. 18CQCh. 1 - Prob. 19CQCh. 1 - In the process of vulcanization the LCMs in latex...Ch. 1 - Prob. 21CQCh. 1 - Prob. 22CQCh. 1 - Prob. 23CQCh. 1 - Prob. 24CQCh. 1 - Prob. 25CQCh. 1 - Prob. 26CQCh. 1 - Prob. 27CQCh. 1 - Prob. 28CQCh. 1 - Prob. 29CQCh. 1 - Prob. 30CQCh. 1 - Prob. 31CQCh. 1 - Prob. 1ETSQCh. 1 - Prob. 2ETSQCh. 1 - Prob. 3ETSQCh. 1 - Prob. 4ETSQCh. 1 - Prob. 5ETSQCh. 1 - Prob. 6ETSQCh. 1 - Prob. 7ETSQCh. 1 - Prob. 8ETSQCh. 1 - Prob. 9ETSQCh. 1 - Prob. 10ETSQCh. 1 - Prob. 11ETSQCh. 1 - Prob. 12ETSQCh. 1 - Prob. 13ETSQCh. 1 - Prob. 14ETSQCh. 1 - Prob. 15ETSQCh. 1 - Prob. 16ETSQCh. 1 - Prob. 17ETSQCh. 1 - Prob. 1DRQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- At a temperature of 60°F, a 0.04-in. gap exists between the ends of the two bars shown. Bar (1) is an aluminum alloy [E = 10,000 ksi; v = 0.32; α=α=12.5 x 10-6/°F] bar with a width of 2.5 in. and a thickness of 0.75 in. Bar (2) is a stainless steel [E = 28,000 ksi; v = 0.12; α=α=9.6 x 10-6/°F] bar with a width of 1.7 in. and a thickness of 0.75 in. The supports at A and C are rigid. Assume h1=2.5 in., h2=1.7 in., L1=31 in., L2=46 in., and Δ=Δ= 0.04 in. (A) Determine the lowest temperature, Tcontact, at which the two bars contact each other. (B) Find a geometry-of-deformation relationship for the case in which the gap is closed. Express this relationship by entering the sum δ1+δ2, where δ1 is the axial deflection of Bar (1), and δ2 is the axial deflection of Bar (2). δ1+δ2= _____in. (C) Find the force in the Bar (1), F1, and the force in Bar (2), F2, at a temperature of 225oF. By convention, a tension force is positive and a compression force is negative. IN KIPS (D) Find σ1 and σ2,…arrow_forwardAt a temperature of 60°F, a 0.04-in. gap exists between the ends of the two bars shown. Bar (1) is an aluminum alloy [E = 10,000 ksi; v = 0.32; a = 13.4 x 10-6/°F] bar with a width of 3 in. and a thickness of 0.75 in. Bar (2) is a stainless steel [E = 28,000 ksi; v = 0.12; a = 10.1 x 10-6/°F] bar with a width of 2 in. and a thickness of 0.75 in. The supports at A and Care rigid. Determine the lowest temperature at which the two bars contact each other. (1) ↑ 3 in. 32 in. O 75.9°F O 146.5°F O 105.8°F O 122.3°F O 111.3°F 2 in. (2) 44 in. -0.04-in. gaparrow_forwardAt a temperature of 60°F, a 0.04-in. gap exists between the ends of the two bars shown. Bar (1) is an aluminum alloy [E = 10,000 ksi; v = 0.32; a = 14.4 x 10-6/°F] bar with a width of 3 in. and a thickness of 0.75 in. Bar (2) is a stainless steel [E = 28,000 ksi; v = 0.12; a = 9.6 × 10-6/°F] bar with a width of 2 in. and a thickness of 0.75 in. The supports at A and Care rigid. Determine the lowest temperature at which the two bars contact each other. (1) 3 in. 32 in. 105.3°F 75.3°F O 147.3°F 86.6°F 113.4°F B ↑ 2 in. ↓ (2) 44 in. 0.04-in. gaparrow_forward
- At a temperature of 60°F, a 0.02-in. gap exists between the ends of the two bars shown. Bar (1) is an aluminum alloy [E = 10,000 ksi; v = 0.32; α=α=12.5 x 10-6/°F] bar with a width of 2.8 in. and a thickness of 0.85 in. Bar (2) is a stainless steel [E = 28,000 ksi; v = 0.12; α=α=9.6 x 10-6/°F] bar with a width of 1.6 in. and a thickness of 0.85 in. The supports at A and C are rigid. Assume h1=2.8 in., h2=1.6 in., L1=26 in., L2=40 in., and Δ=Δ= 0.02 in. Determine(a) the lowest temperature at which the two bars contact each other.(b) the normal stress in the two bars at a temperature of 225°F.(c) the normal strain in the two bars at 225°F.(d) the change in width of the aluminum bar at a temperature of 225°F.arrow_forwardThe assembly shown is composed of a steel shell and an aluminum core that has been welded to a rigid plate. The gap between the plate and the steel shell is 1- mm. If the assembly's temperature is reduced by 180°C, determine (a) the final axial stresses in each material and (b) the deflection of the rigid bar. To support your response, draw a deformation diagram with appropriate labels. Use the following properties: Aluminum core Steel shell Diameters (mm) d = 15 mm do = 30 mm d₁ = 20 mm E (GPa) 70 200 2 m a (/°C) 22 x 10-6 12 x 10-6arrow_forwardStress in segment bronze and steelarrow_forward
- 2arrow_forwardSteel, Brass, and Copper rods are connected as shown in the figure. Initially, the temperature was 15 degrees Celsius and the stress on the bars is zero. Eventually, the temperature increased to 25 degrees Celsius. Determine the total deformation on the brass. Steel Brass Copper Est = 200 GPa 12(10-)/°C apr Ebr Ecu 17(10-)/°C 120 GPa 100 GPa %3D ast = 21(10-6)/°C acu Acu = 515 mm? |Ast 200 mm2 Abr = 450 mm2 300 mm -200 mm 100 mm O -0.0109mm O 0.0241mm O -0.0241mm O 0.0109mm oooOarrow_forwardTwo plates of dimensions 150 mm x 16 mm and 150 mm x 12 mm at their welding edges are joined by butt welding as shown in the figure. What is the maximum tension that this single V-butt weld joint can transmit? The permissible tensile stress in the plates is 150 MPa. 12 mm Taper 1 in 15 (on both faces) 16 mmarrow_forward
- 20)arrow_forwardThe rigid block of mass M is supported by the three symmetrically placed rods. The ends of the rods were level before the block was attached. Determine the largest allowable value of M if the properties of the rods are as listed (ow is the working stress): Element E (GPa) A (mm²) ow (MPa) Copper 120 900 70 Steel 200 1200 140arrow_forwardThe assembly is composed of a steel shell and an aluminum core that has been welded to a rigid plate. The gap between the plate and the aluminum is initially 1- mm. If the assembly's temperature is reduced by 180°C, determine (a) the final axial stresses in each material and (b) the deflection of the rigid bar. To support your response, draw a deformation diagram with appropriate labels. Use the following properties: Aluminum core Steel shell Diameters (mm) d = 15 mm do = 30 mm d₁ = 20 mm E (GPa) 70 200 2 m a (/°C) 22 x 10-6 12 x 10-6arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage LearningConstruction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Construction Materials, Methods and Techniques (M...
Civil Engineering
ISBN:9781305086272
Author:William P. Spence, Eva Kultermann
Publisher:Cengage Learning