Concept explainers
True or False? Justify your answer with a proof or a counterexample.
310. A function is always one-to-one.
To calculate: Justify the statement with a proof or a counterexample
“A function is always one-to-one.”
Answer to Problem 310RE
The statement “A function is always one-to-one” is false.
Explanation of Solution
Given information: Given statement is “A function is always one-to-one.”
Formula used: A function is said to be one-to-one, if every element of the range of the function corresponds to exactly one element of the domain.
For a function to be one-to one
If
Then
Calculation:
Let us consider an example.
Let
This implies that
Thus, for element in range, there exists two elements in domain.
Hence, the function is not always one-to-one.
Conclusion:
Hence, the statement “A function is always one-to-one” is false.
Want to see more full solutions like this?
Chapter 1 Solutions
Calculus Volume 1
Additional Math Textbook Solutions
University Calculus: Early Transcendentals (4th Edition)
Elementary and Intermediate Algebra: Concepts and Applications (7th Edition)
Elementary Statistics: Picturing the World (7th Edition)
Calculus: Early Transcendentals (2nd Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
- 5. [10 marks] Determine whether the graph below has a perfect matching. Explain why your answer is correct. ข พarrow_forward(c) Utilize Fubini's Theorem to demonstrate that E(X)= = (1- F(x))dx.arrow_forward(c) Describe the positive and negative parts of a random variable. How is the integral defined for a general random variable using these components?arrow_forward
- Let k ≥ 1, and let G be a k-regular bipartite graph with bipartition X, Y . Prove that |X| is the minimum size of a vertex cover in G.arrow_forward3. [10 marks] Let Go = (V,E) and G₁ = (V,E₁) be two graphs on the same set of vertices. Let (V, EU E1), so that (u, v) is an edge of H if and only if (u, v) is an edge of Go or of G1 (or of both). H = (a) Show that if Go and G₁ are both Eulerian and En E₁ = Ø (i.e., Go and G₁ have no edges in common), then H is also Eulerian. (b) Give an example where Go and G₁ are both Eulerian, but H is not Eulerian.arrow_forward26. (a) Provide an example where X, X but E(X,) does not converge to E(X).arrow_forward
- (b) Demonstrate that if X and Y are independent, then it follows that E(XY) E(X)E(Y);arrow_forward(d) Under what conditions do we say that a random variable X is integrable, specifically when (i) X is a non-negative random variable and (ii) when X is a general random variable?arrow_forward29. State the Borel-Cantelli Lemmas without proof. What is the primary distinction between Lemma 1 and Lemma 2?arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell