Concept explainers
1-38 Make the following conversions (conversion factor are given in Table 1-3):
(a) 42.6 kg to lb
(b) 1.62 lb to g
(c) 34 in. to cm
(d) 37.2 km to mi
(e) 2.73 gal to L
(f) 62g to oz
(g) 33.61 qt to L
(h) 43.7 L to gal
(i) 1.1 mi to km
(j) 34.9 mL to fl oz
(a)
Interpretation:
Conversion of 42.6 kg to lb should be determined.
Concept Introduction:
Concept Introduction:
Mass can be converted from kg to lb using the following conversion factor.
Answer to Problem 26P
Mass in lb = 93.9 lb.
Explanation of Solution
Converting 42.6kg to lb:
Thus, mass in lb is equal to 93.9 lb.
(b)
Interpretation:
Conversion of 1.62 lb to g should be determined.
Concept Introduction:
Mass can be converted from lb to kg using the following conversion factor.
Answer to Problem 26P
Mass in g = 734.81 g.
Explanation of Solution
Converting 1.62 lb to g,
Thus, mass in kg is equal to 734.81 g.
(c)
Interpretation:
Conversion of 34 in. to cm should be determined.
Concept Introduction:
Length can be converted from in. to cm using the conversion factor,
Answer to Problem 26P
Length in cm = 86.36 cm.
Explanation of Solution
Converting 34 in. to cm:
Thus, length in cm = 86.36 cm.
(d)
Interpretation:
Conversion of 37.2 km to mi should be determined.
Concept Introduction:
Length can be converted from km to mi using the following conversion factor.
Answer to Problem 26P
Distance in miles = 23.1 miles.
Explanation of Solution
Converting 37.2 km to mi:
Thus, distance in miles = 23.1 miles.
(e)
Interpretation:
Conversion of 2.73 gal to L should be determined.
Concept Introduction:
Volume can be converted from gal to L using the following conversion factor.
Answer to Problem 26P
Volume in liters = 10.3 L.
Explanation of Solution
Converting 2.73 gal to L:
Thus, volume in liters = 10.3 L.
(f)
Interpretation:
Conversion of 62 g to oz should be determined.
Concept Introduction:
Mass can be converted from g to oz using the following conversion factor.
Answer to Problem 26P
The value in oz = 2.18 oz.
Explanation of Solution
Converting 62 g to oz:
Thus, the value in oz = 2.18 oz.
(g)
Interpretation:
Conversion of 33.61 qt to L should be determined.
Concept Introduction:
Volume can be converted from qt to L using the following conversion factor.
Answer to Problem 26P
The value in liter = 31.8 L.
Explanation of Solution
Converting 33.61 qt to L:
Thus, the value in liter = 31.8 L.
(h)
Interpretation:
Conversion of 43.7 L to gal should be determined.
Concept Introduction:
Volume can be converted from L to gal using the following conversion factor.
Answer to Problem 26P
The value in gal = 11.5 gal.
Explanation of Solution
Converting 43.7 L to gal:
Thus, the value in gal = 11.5 gal.
(i)
Interpretation:
Conversion of 1.1 mi to km should be determined.
Concept Introduction:
Length can be converted from mi to km using the following conversion factor.
Answer to Problem 26P
The value in km = 1.76 km.
Explanation of Solution
Converting 1.1 mi to km:
Thus, the value in km = 1.76 km.
(j)
Interpretation:
Conversion of 34.9 mL to fl oz should be determined.
Concept Introduction:
Volume can be converted from mL to fl oz using the following conversion factor.
Answer to Problem 26P
The value in fl oz =1.18 fl oz.
Explanation of Solution
Converting 34.9 mL to fl oz:
Thus, the value in fl oz =1.18 fl oz.
Want to see more full solutions like this?
Chapter 1 Solutions
Introduction to General, Organic and Biochemistry
- Please correct answer and don't used hand raitingarrow_forward(11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)!arrow_forward. 3°C with TH 12. (10pts total) Provide the major product for each reaction depicted below. If no reaction occurs write NR. Assume heat dissipation is carefully controlled in the fluorine reaction. 3H 24 total (30) 24 21 2h • 6H total ● 8H total 34 래 Br2 hv major product will be most Substituted 12 hv Br NR I too weak of a participate in P-1 F₂ hv Statistically most favored product will be major = most subst = thermo favored hydrogen atom abstractor to LL Farrow_forward
- Five chemistry project topic that does not involve practicalarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardQ2. Consider the hydrogenation of ethylene C2H4 + H2 = C2H6 The heats of combustion and molar entropies for the three gases at 298 K are given by: C2H4 C2H6 H2 AH comb/kJ mol¹ -1395 -1550 -243 Sº / J K¹ mol-1 220.7 230.4 131.1 The average heat capacity change, ACP, for the reaction over the temperature range 298-1000 K is 10.9 J K¹ mol¹. Using these data, determine: (a) the standard enthalpy change at 800 K (b) the standard entropy change at 800 K (c) the equilibrium constant at 800 K.arrow_forward
- 13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)! Googlearrow_forwardPrint Last Name, First Name Initial Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 4th total • 6H total 래 • 4H total 21 total ZH 2H Statistical H < 3° C-H weakest - product abstraction here bund leads to thermo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Product 6 Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Cl Waterfoxarrow_forward10. (5pts) Provide the complete arrow pushing mechanism for the chemical transformation → depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O II HA H CH3O-H H ①arrow_forward
- Do the Lone Pairs get added bc its valence e's are a total of 6 for oxygen and that completes it or due to other reasons. How do we know the particular indication of such.arrow_forwardNGLISH b) Identify the bonds present in the molecule drawn (s) above. (break) State the function of the following equipments found in laboratory. Omka) a) Gas mask b) Fire extinguisher c) Safety glasses 4. 60cm³ of oxygen gas diffused through a porous hole in 50 seconds. How long w 80cm³ of sulphur(IV) oxide to diffuse through the same hole under the same conditions (S-32.0.0-16.0) (3 m 5. In an experiment, a piece of magnesium ribbon was cleaned with steel w clean magnesium ribbon was placed in a crucible and completely burnt in oxy cooling the product weighed 4.0g a) Explain why it is necessary to clean magnesium ribbon. Masterclass Holiday assignmen PB 2arrow_forwardHi!! Please provide a solution that is handwritten. Ensure all figures, reaction mechanisms (with arrows and lone pairs please!!), and structures are clearly drawn to illustrate the synthesis of the product as per the standards of a third year organic chemistry course. ****the solution must include all steps, mechanisms, and intermediate structures as required. Please hand-draw the mechanisms and structures to support your explanation. Don’t give me AI-generated diagrams or text-based explanations, no wordy explanations on how to draw the structures I need help with the exact mechanism hand drawn by you!!! I am reposting this—ensure all parts of the question are straightforward and clear or please let another expert handle it thanks!!arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning