Input All Base Types
Program plan:
- Create a class InputBaseTypes to read different base types of input into standard output device.
- In main() function.
- Invoke the function inputAllBaseTypes() and write the different types of input to output device.
- In the method inputAllBaseTypes(),
- Read the different input values such as integer, decimal, big integer, big decimal, float, Boolean, long, and long integer from user and checks each base type of input value then it prints back to standard output device.
- Use the while loop and predefined function hasNextInt() to check whether the given input is integer or not..
- Use the while loop and predefined function hasNextBigDecimal() to check whether the given input is big decimal or not.
- Use the while loop and predefined function hasNextLong () to check whether the given input is long or not.
- Use the while loop and predefined function hasNextDouble() to check whether the given input is integer or not.
- Use the while loop and predefined function hasNextBoolean() to check whether the given input is Boolean or not.
- Use the while loop and predefined function hasNextBigInteger () to check whether the given input is big integer or not.
- Use the while loop and predefined function hasNextByte () to check whether the given input is byte or not.
- Use the while loop and predefined function hasNextFloat () to check whether the given input is float or not.
- In main() function.
Program to implement the method inputAllBaseTypes() that reads different base type input from input device and print the input back to standard output device.
Explanation of Solution
Program:
//Import the required java package
import java.util.Scanner;
Create a class InputBaseTypes to read different base types of input into standard output device.
//Main class definition
public class InputBaseTypes
{
The main() function prints all types of input into a standard output device.
//Main function
public static void main(String[] args)
{
//Display the header
System.out.println( "Basic input types." );
Invoke the function inputAllBaseTypes() and write the different types of input to output device.
//Call the function inputAllBaseTypes()
System.out.println(inputAllBaseTypes() );
}
Create the method inputAllBaseTypes() that reads the input value from user and checks each base type of input value then it prints back to standard output device.
//Create the method
public static int inputAllBaseTypes()
{
//Read the input from user
Scanner input = new Scanner(System.in);
Get the integer value from user.
//Read the integer value
System.out.print("Enter an integer: ");
Use the while loop and predefined function hasNextInt() to check whether the given input is integer or not. If not, skip the current input and display the error message. If the input is integer, then return back the input to display in standard output device.
/*Call the function hasNextInt() to check the given input is an integer*/
while( !input.hasNextInt() )
{
//Return the skipped input
input.nextLine();
//Display the error message
System.out.print("Not an integer, try again: ");
}
/*Display the entered big decimal into output device.*/
System.out.println( "You entered: " + input.nextInt() );
Get the big decimal from user.
//Read the integer value
System.out.print("Enter a BigDecimal: ");
Use the while loop and predefined function hasNextBigDecimal() to check whether the given input is big decimal or not. If not, skip the current input and display the error message. If the input is big decimal, then return back the input to display in standard output device.
/*Call the function hasNextBigDecimal () to check the given input is an big decimal*/
while( !input.hasNextBigDecimal() )
{
//Return the skipped input
input.nextLine();
//Display the error message
System.out.print("Not a BigDecimal, try again: ");
}
/*Display the entered big decimal into output device*/
System.out.println( "You entered: " + input.nextBigDecimal() );
Get the long value from user.
//Read the long value
System.out.println( "Enter a long: " );
Use the while loop and predefined function hasNextLong() to check whether the given input is long or not. If not, skip the current input and display the error message. If the input is long, then return back the input to display in standard output device.
/*Call the function hasNextLong() to check the given input is a long*/
while( !input.hasNextLong() )
{
//Return the skipped input
input.nextLine();
//Display the error message
System.out.println( "Not a long, try again" );
}
/*Display the entered long value into output device*/
System.out.println( "You entered: " + input.nextLong() );
Get the double value from user.
//Read the double value
System.out.println( "Enter a double: " );
Use the while loop and predefined function hasNextDouble() to check whether the given input is integer or not. If not, skip the current input and display the error message. If the input is integer, then return back the input to display in standard output device.
/*Call the function hasNextDouble() to check the given input is an double*/
while( !input.hasNextDouble() )
{
//Return the skipped input
input.nextLine();
//Display the error message
System.out.println( "Not a double, try again" );
}
/*Display the entered double value into output device.*/
System.out.println( "You entered: " + input.nextDouble() );
Get the Boolean value from user.
//Read the Boolean value
System.out.println( "Enter a boolean: " );
Use the while loop and predefined function hasNextBoolean() to check whether the given input is Boolean or not. If not, skip the current input and display the error message. If the input is Boolean, then return back the input to display in standard output device.
/*Call the function hasNextBoolean () to check the given input is an big decimal*/
while( !input.hasNextBoolean() )
{
//Return the skipped input
input.nextLine();
//Display the error message
System.out.println( "Not a boolean, try again" );
}
//Display the entered boolean into output device
System.out.println( "You entered: " + input.nextBoolean() );
Get the big integer value from user.
//Read the big integer value
System.out.println( "Enter a BigInteger: " );
Use the while loop and predefined function hasNextBigInteger() to check whether the given input is big integer or not. If not, skip the current input and display the error message. If the input is big integer, then return back the input to display in standard output device.
/*Call the function hasNextBigInteger() to check the given input is a long*/
while( !input.hasNextBigInteger() )
{
//Return the skipped input
input.nextLine();
//Display the error message
System.out.println( "Not a BigInteger, try again" );
}
/*Display the entered big integer into output device*/
System.out.println( "You entered: " + input.nextBigInteger() );
Get the input byte from user.
//Read the byte value
System.out.println( "Enter a Byte: " );
Use the while loop and predefined function hasNextByte () to check whether the given input is byte or not. If not, skip the current input and display the error message. If the input is byte, then return back the input to display in standard output device.
/*Call the function hasNextByte() to check the given input is a long*/
while( !input.hasNextByte() )
{
//Return the skipped input
input.nextLine();
//Display the error message
System.out.println( "Not a Byte, try again" );
}
//Display the entered byte into output device
System.out.println( "You entered: " + input.nextByte() );
Get the float value from user.
//Read the float value
System.out.println( "Enter a Float: " );
Use the while loop and predefined function hasNextFloat () to check whether the given input is float or not. If not, skip the current input and display the error message. If the input is float, then return back the input to display in standard output device.
/*Call the function hasNextFloat() to check the given input is a long*/
while( !input.hasNextFloat() )
{
//Return the skipped input
input.nextLine();
//Display the error message
System.out.println( "Not a Float, try again" );
}
//Display the entered float into output device
System.out.println( "You entered: " + input.nextFloat() );
//Return the value
return 0;
}
}
Output:
Basic input types.
Enter an integer: 1234
You entered: 1234
Enter a BigDecimal: 15
You entered: 15
Enter a long:
5
You entered: 5
Enter a double:
2
You entered: 2.0
Enter a boolean:
g
Not a boolean, try again
true
You entered: true
Enter a BigInteger:
89076
You entered: 89076
Enter a Byte:
u
Not a Byte, try again
8
You entered: 8
Enter a Float:
25
You entered: 25.0
0
Want to see more full solutions like this?
Chapter 1 Solutions
Data Structures and Algorithms in Java
- Whentheuserenters!!,themostrecentcommandinthehistoryisexecuted.In the example above, if the user entered the command: Osh> !! The ‘ls -l’ command should be executed and echoed on user’s screen. The command should also be placed in the history buffer as the next command. Whentheuserentersasingle!followedbyanintegerN,theNthcommandin the history is executed. In the example above, if the user entered the command: Osh> ! 3 The ‘ps’ command should be executed and echoed on the user’s screen. The command should also be placed in the history buffer as the next command. Error handling: The program should also manage basic error handling. For example, if there are no commands in the history, entering !! should result in a message “No commands in history.” Also, if there is no command corresponding to the number entered with the single !, the program should output "No such command in history."arrow_forwardActivity No. Activity Time (weeks) Immediate Predecessors 1 Requirements collection 3 2 Requirements structuring 4 1 3 Process analysis 3 2 4 Data analysis 3 2 5 Logical design 50 3,4 6 Physical design 5 5 7 Implementation 6 6 c. Using the information from part b, prepare a network diagram. Identify the critical path.arrow_forward2. UNIX Shell and History Feature [20 points] This question consists of designing a C program to serve as a shell interface that accepts user commands and then executes each command in a separate process. A shell interface gives the user a prompt, after which the next command is entered. The example below illustrates the prompt osh> and the user's next command: cat prog.c. The UNIX/Linux cat command displays the contents of the file prog.c on the terminal using the UNIX/Linux cat command and your program needs to do the same. osh> cat prog.c The above can be achieved by running your shell interface as a parent process. Every time a command is entered, you create a child process by using fork(), which then executes the user's command using one of the system calls in the exec() family (as described in Chapter 3). A C program that provides the general operations of a command-line shell can be seen below. #include #include #define MAX LINE 80 /* The maximum length command */ { int…arrow_forward
- Question#2: Design and implement a Java program using Abstract Factory and Singleton design patterns. The program displays date and time in one of the following two formats: Format 1: Date: MM/DD/YYYY Time: HH:MM:SS Format 2: Date: DD-MM-YYYY Time: SS,MM,HH The following is how the program works. In the beginning, the program asks the user what display format that she wants. Then the program continuously asks the user to give one of the following commands, and performs the corresponding task. Note that the program gets the current date and time from the system clock (use the appropriate Java date and time operations for this). 'd' display current date 't': display current time 'q': quit the program. • In the program, there should be 2 product hierarchies: "DateObject” and “TimeObject”. Each hierarchy should have format and format2 described above. • Implement the factories as singletons. • Run your code and attach screenshots of the results. • Draw a UML class diagram for the program.arrow_forward#include <linux/module.h> #include <linux/kernel.h> // part 2 #include <linux/sched.h> // part 2 extra #include <linux/hash.h> #include <linux/gcd.h> #include <asm/param.h> #include <linux/jiffies.h> void print_init_PCB(void) { printk(KERN_INFO "init_task pid:%d\n", init_task.pid); printk(KERN_INFO "init_task state:%lu\n", init_task.state); printk(KERN_INFO "init_task flags:%d\n", init_task.flags); printk(KERN_INFO "init_task runtime priority:%d\n", init_task.rt_priority); printk(KERN_INFO "init_task process policy:%d\n", init_task.policy); printk(KERN_INFO "init_task task group id:%d\n", init_task.tgid); } /* This function is called when the module is loaded. */ int simple_init(void) { printk(KERN_INFO "Loading Module\n"); print_init_PCB(); printk(KERN_INFO "Golden Ration Prime = %lu\n", GOLDEN_RATIO_PRIME); printk(KERN_INFO "HZ = %d\n", HZ); printk(KERN_INFO "enter jiffies = %lu\n", jiffies); return 0; } /* This function is called when the…arrow_forwardList at least five Operating Systems you know. What is the difference between the kernel mode and the user mode for the Linux? What is the system-call? Give an example of API in OS that use the system-call. What is cache? Why the CPU has cache? What is the difference between the Static Linking and Dynamic Linking when compiling the code.arrow_forward
- In the GoF book, List interface is defined as follows: interface List { int count(); //return the current number of elements in the list Object get(int index); //return the object at the index in the list Object first(); //return the first object in the list Object last(); //return the last object in the list boolean include(Object obj); //return true is the object in the list void append(Object obj); //append the object to the end of the list void prepend(Object obj); //insert the object to the front of the list void delete(Object obj); //remove the object from the list void deleteLast(); //remove the last element of the list void deleteFirst(); //remove the first element of the list void deleteAll(); //remove all elements of the list (a) Write a class adapter to adapt Java ArrayList to GoF List interface. (b) Write a main program to test your adapters through List interface. (c) Same requirement as (a) and (b), but write an object adapter to adapt Java ArrayList to GoF List…arrow_forwardIn modern packet-switched networks, including the Internet, the source host segments long, application-layer messages (for example, an image or a music file) into smaller packets and sends the packets into the network. The receiver then reassembles the packets back into the original message. We refer to this process as message segmentation. Figure 1.27 (attached) illustrates the end-to-end transport of a message with and without message segmentation. Consider a message that is 106 bits long that is to be sent from source to destination in Figure 1.27. Suppose each link in the figure is 5 Mbps. Ignore propagation, queuing, and processing delays. a. Consider sending the message from source to destination without message segmentation. How long does it take to move the message from the source host to the first packet switch? Keeping in mind that each switch uses store-and-forward packet switching, what is the total time to move the message from source host to destination host? b. Now…arrow_forwardConsider a packet of length L that begins at end system A and travels over three links to a destination end system. These three links are connected by two packet switches. Let di, si, and Ri denote the length, propagation speed, and the transmission rate of link i, for i = 1, 2, 3. The packet switch delays each packet by dproc. Assuming no queuing delays, in terms of di, si, Ri, (i = 1, 2, 3), and L, what is the total end-to-end delay for the packet? Suppose now the packet is 1,500 bytes, the propagation speed on all three links is 2.5 * 10^8 m/s, the transmission rates of all three links are 2.5 Mbps, the packet switch processing delay is 3 msec, the length of the first link is 5,000 km, the length of the second link is 4,000 km, and the length of the last link is 1,000 km. For these values, what is the end-to-end delay?arrow_forward
- how to know the weight to data and data to weight also weight by infomraion gain in rapid miner , between this flow diagram retrieve then selecte attrbuite then set role and split data and decision tree and apply model and peformance ,please show how the operators should be connected:arrow_forwardusing rapid miner how to creat decison trea for all attribute and another one with delete one or more of them also how i know the weight of each attribute and what that mean in impact the resultarrow_forwardQ.1. Architecture performance [10 marks] Answer A certain microprocessor requires either 2, 4, or 6 machine cycles to perform various operations. ⚫ (40+g+f)% require 2 machine cycles, ⚫ (30-g) % require 4 machine cycles, and ⚫ (30-f)% require 6 machine cycles. (a) What is the average number of machine cycles per instruction for this microprocessor? Answer (b) What is the clock rate (machine cycles per second) required for this microprocessor to be a "1000 MIPS" processor? Answer (c) Suppose that 35% of the instructions require retrieving an operand from memory which needs an extra 8 machine cycles. What is the average number of machine cycles per instruction, including the instructions that fetch operands from memory?arrow_forward
- Microsoft Visual C#Computer ScienceISBN:9781337102100Author:Joyce, Farrell.Publisher:Cengage Learning,EBK JAVA PROGRAMMINGComputer ScienceISBN:9781337671385Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENTEBK JAVA PROGRAMMINGComputer ScienceISBN:9781305480537Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENT
- C++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningProgramming Logic & Design ComprehensiveComputer ScienceISBN:9781337669405Author:FARRELLPublisher:CengageSystems ArchitectureComputer ScienceISBN:9781305080195Author:Stephen D. BurdPublisher:Cengage Learning