
Answer each question yes or no. Must two quantities have the same dimensions (a) if you are adding them? (b) If you are multiplying them? (c) If you are subtracting them? (d) If you are dividing them? (e) If you are equating them?
(a)

The equivalence in dimensionality upon addition
Answer to Problem 1OQ
Yes.
Explanation of Solution
For the four basic operations that is addition, subtraction, multiplication, and division will have different conditions to for performing these operations under the conditions of dimensions.
Considering each operations separately in the case of addition or subtraction, the dimensions of the quantities must have the same units or dimensions whereas for multiplication and division, the dimensions of the quantities need not be of same units or dimensions.
Conclusion
For example, in the case of addition, one cannot add
(b)

The equivalence in dimensionality upon multiplication
Answer to Problem 1OQ
No.
Explanation of Solution
The dimensions of the quantities need not be of same units or dimensions for operations such as multiplication.
Take an example, to obtain the area of a rectangle of dimension
Conclusion
Option (b) is no; that is there is no need of the quantities to have the same dimensions.
(c)

The equivalence in dimensionality upon subtraction.
Answer to Problem 1OQ
Yes.
Explanation of Solution
The dimensions of the quantities should have same units or dimensions for subtraction.
For example, in the case of subtraction, one cannot subtract
Conclusion
Option (c) is yes; because the quantities must have the same dimensions.
(d)

The equivalence in dimensionality upon division.
Answer to Problem 1OQ
No.
Explanation of Solution
There is no need of the quantities to have same dimensions to operate the division operation.
Take an example, to obtain the density of a system whose mass is
Conclusion
Option (d) is no, that is there is no need of the quantities to have the same dimensions
(e)

The equivalence in dimensionality upon equating two quantities.
Answer to Problem 1OQ
Yes.
Explanation of Solution
For equating two quantities, the dimensions have to be same because what is in one side should be the same on the other side.
Take an example, to equate the velocity of a system, the distance and the time should the same dimension that of velocity that is,
Conclusion
Option (e) is also yes because the quantities should have same dimension to equate.
Want to see more full solutions like this?
Chapter 1 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- pls help on thesearrow_forward20. Two small conducting spheres are placed on top of insulating pads. The 3.7 × 10-10 C sphere is fixed whie the 3.0 × 107 C sphere, initially at rest, is free to move. The mass of each sphere is 0.09 kg. If the spheres are initially 0.10 m apart, how fast will the sphere be moving when they are 1.5 m apart?arrow_forwardpls help on allarrow_forward
- 19. Mount Everest, Earth's highest mountain above sea level, has a peak of 8849 m above sea level. Assume that sea level defines the height of Earth's surface. (re = 6.38 × 106 m, ME = 5.98 × 1024 kg, G = 6.67 × 10 -11 Nm²/kg²) a. Calculate the strength of Earth's gravitational field at a point at the peak of Mount Everest. b. What is the ratio of the strength of Earth's gravitational field at a point 644416m below the surface of the Earth to a point at the top of Mount Everest? C. A tourist watching the sunrise on top of Mount Everest observes a satellite orbiting Earth at an altitude 3580 km above his position. Determine the speed of the satellite.arrow_forwardpls help on allarrow_forwardpls help on allarrow_forward
- 6. As the distance between two charges decreases, the magnitude of the electric potential energy of the two-charge system: a) Always increases b) Always decreases c) Increases if the charges have the same sign, decreases if they have the opposite signs d) Increases if the charges have the opposite sign, decreases if they have the same sign 7. To analyze the motion of an elastic collision between two charged particles we use conservation of & a) Energy, Velocity b) Momentum, Force c) Mass, Momentum d) Energy, Momentum e) Kinetic Energy, Potential Energyarrow_forwardpls help on all asked questions kindlyarrow_forwardpls help on all asked questions kindlyarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College





