
Concept explainers
Mary and Marcie. identical twins, go to the same internist who is also a faculty member at a major medical center. At their last visit, they each received a brochure describing a genetics research program recently launched by the hospital and its affiliated university. Researchers were asking for volunteers to fill out a questionnaire and a consent form, donate a blood sample, and have their medical records encoded and transferred to a database. The goal was to enroll 100,000 participants, and the brochure noted that over 10,000 people had already agreed to participate.
The blood sample would be used to extract DNA. which would be encoded with the same number as the medical records. This DNA would be used to search for genes associated with conditions such as arthritis, diabetes, and Alzheimer disease. The idea is that researchers interested in studying arthritis would use the medical records to identify which participants have the condition and then use DNA from those individuals to find genetic similarities that are not present in participants who do not have arthritis. The genetic similarities help identify regions of the genome that contain genes associated with arthritis. These regions can then be studied in detail to identify and isolate genes that may be associated with arthritis and other inflammatory disorders.
In exchange for enrolling, participants would be informed about any genetic conditions or predispositions to genetic disease they carry and would receive free access to testing. After discussing the brochure. Mary decided to enroll, but Marcie decided she did not want to do so. She said she did not want to know what diseases she may develop or which disease genes she may carry.
At their next annual visit. Mary’s internist told her that because her questionnaire indicated that some relatives had Alzheimer disease, her DNA was used in a study to identify risk genes. He said she had been identified as a carrier of a gene that greatly increased the likelihood that she would develop Alzheimer disease. The physician told her that age was the greatest risk factor, and while it was not 100% certain she would become a victim of Alzheimer disease, the gene she carries is a factor in 20–25% of all cases. Mary asked if there was anything she could do about these findings. The internist told her that exercise, controlling blood pressure and cholesterol levels, as well as participating in mentally challenging activities such as reading or playing a musical instrument may all help reduce her chances of developing this disease. Mary then asked if Marcie was going to be told about Mary’s genetic risk, and the internist said that he would not tell her.
For the next few days. Mary was conflicted about the situation. Marcie was an Identical twin, and If Mary carried a gene predisposing her to Alzheimer disease. Marcie must carry the same gene. Marcie did not exercise with Mary, had high blood pressure, and little interest in reading or social activities. Mary did not know whether she should tell Marcie.
If you were advising Mary, what would you say? Should she tell Marcie about the risk? Should she not tell her, but instead try to get Marcie to exercise and be more social? Should Mary ask their internist to talk with Marcie about this?

To explain: The suggestions an individual would give to Mary in the given situation.
Introduction: Alzheimer is a genetic disease that leads to permanent dementia (memory loss) in old ages. It is one of the most common forms of dementia in elderly people. Symptoms of Alzheimer disease are somewhat different from dementia caused due to other reasons. It is a genetic disorder that is caused by genetic mutations of some genes that are associated with human memory. These genetic mutations cause structural as well as cellular changes in the brain and its activities leading to reduced capability of memorizing things and effect on daily life activities.
Explanation of Solution
In the case as of the twin sisters Mary and Marcie, a person would suggest similar things that the physician suggested to Mary. She would be told to have a healthy body with regular exercise and balanced diet. For a person who is likely to become a patient of the known disease, it is very beneficial to adopt the habits that would delay or reduce the severity of the disease. For Alzheimer disease, it is very important to keep control of the blood pressure and the cholesterol level in the body.
Along with this, Mary would also be suggested to talk to her sister to get tested for the disease. Instead of taking the stress of the upcoming disease, it would be more beneficial to adopt the necessary measures that can reduce or delay the know disease.

To explain: Whether Mary should inform Marcie about the risk they both have or not.
Explanation of Solution
Upon getting to know about the risk of Alzheimer disease that both these twin sisters carry, Mary should definitely inform Marcie about it. She should make her aware of the upcoming disease and the possible ways for delaying and reducing the severity of the upcoming disease.

To explain: Whether Mary should not inform Marcie about the risk and try to get her to exercise and be more social.
Explanation of Solution
Although Mary should inform her sister Marcie about the risk of Alzheimer disease that she might be carrying, but she can also be motivated to be involved in more exercise and social activities. This can help her to delay the onset of the disease. Marcie can be made to understand the complete situation and helped in moving towards a healthier lifestyle.

To explain: Whether Mary should ask her internist to talk with Marcie about the situation or not.
Explanation of Solution
Mary can definitely ask her internist to talk to her sister Marcie regarding the genetic risk that Marcie would be carrying. She can ask the physician to make Marcie understand about the disease and the measures that can be adopted to delay the onset of the disease.
Want to see more full solutions like this?
Chapter 1 Solutions
Human Heredity: Principles and Issues (MindTap Course List)
- foraging/diet type teeth tongue stomach intestines cecum Insectivory numerous, spiky, incisors procumbentExample: moleExample: shrew -- simple short mostly lacking Myrmecophagy absent or reduced in numbers, peg-likeExample: tamandua anteater extremely long simple, often roughened short small or lacking Terrestrial carnivory sharp incisors; long, conical canines; often carnassial cheek teeth; may have crushing molarsExample: dog -- simple short small Aquatic carnivory homodont, spiky, numerousExample: common dolphin -- simple or multichambered (cetaceans only) variable small or absent Sanguinivory very sharp upper incisors; reduced cheek teethExample: vampire bat grooved tubular, highly extensible long small or lacking Herbivory (except nectivores) incisors robust or absent; canines reduced or absent; diastema; cheek teeth enlarged with complex occlusal surfacesExample: beaver -- simple (hindgut fermenters) or multichambered (ruminants) long large Filter feeding none…arrow_forward3. Shown below is the dental formula and digestive tract anatomy of three mammalian species (A, B, and C). What kind of diet would you expect each species to have? Support your answers with what you can infer from the dental formula and what you can see in the diagram. Broadly speaking, what accounts for the differences? Species A 3/3, 1/1, 4/4, 3/3 པར『ན་ cm 30 Species B 4/3, 1/1, 2/2, 4/4 cm 10 Species C 0/4, 0/0,3/3, 3/3 020arrow_forward3. Shown below is the dental formula and digestive tract anatomy of three mammalian species (A, B, and C). What kind of diet would you expect each species to have? Support your answers with what you can infer from the dental formula and what you can see in the diagram. Broadly speaking, what accounts for the differences? Species A 3/3, 1/1, 4/4, 3/3 cm 30 Species B 0/4, 0/0, 3/3, 3/3 cm 10 Species C 4/3, 1/1, 2/2, 4/4 E 0 cm 20 AILarrow_forward
- Normal dive (for diving humans) normal breathing dive normal breathing Oz level CO₂ level urgent need to breathe Oz blackout zone high CO₂ triggers breathing 6. This diagram shows rates of oxygen depletion and carbon dioxide accumulation in the blood in relation to the levels needed to maintain consciousness and trigger the urgent need to breathe in diving humans. • How might the location and slope of the O2 line differ for diving marine mammals such as whales and dolphins? • How might the location and slope of the CO2 line differ for diving marine mammals such as whales and dolphins? • • Draw in predicted lines for O2 and CO2, based on your reasoning above. How might the location of the Urgent Need to Breathe line and the O2 Blackout Zone line differ for diving marine mammals? What physiological mechanisms account for each of these differences, resulting in the ability of marine mammals to stay submerged for long periods of time?arrow_forwardHow much ATP will be produced during the following metabolic scenario: Aerobic respiration of a 5mM lipid solution that is made up of one glycerol and an 8-carbon fatty acid and 12-carbon fatty acid. Recall that when glycerol breaks down to Glyceraldehyde-3-phosphate it costs one ATP but your get an extra FADH2. Every two carbons of a fatty acid break down to one acetyl-CoA. Units cannot be entered in this style of question but the units of your answer should be in mM of ATP.arrow_forwardIf a bacterium using aerobic respiration was to degrade one small protein molecule into 8 molecules of pyruvic acid, how many ATP would that cell make? Assume there is no other carbon source. Units cannot be entered in this style of question but the units of your answer should be in molecules of ATP.arrow_forward
- If a bacterium using aerobic respiration was to degrade a 30 mM solution of citric acid, how many ATP would that cell make? Assume no other carbon source is available. Units cannot be entered in this style of question but the units of your answer should be in mM of ATP.arrow_forwardHow much ATP will be produced during the following metabolic scenario: Aerobic respiration of a 5mM lipid solution that is made up of one glycerol and an 8-carbon fatty acid and 12-carbon fatty acid. Recall that when glycerol breaks down to Glyceraldehyde-3-phosphate it costs one ATP but your get an extra FADH2. Every two carbons of a fatty acid break down to one acetyl-CoA. (pathways will be provided on the exam) Units cannot be entered in this style of question but the units of your answer should be in mM of ATP.arrow_forwardWhen beta-lactamase was isolated from Staphylcoccus aureus and treated with a phosphorylating agent, only the active site, serine was phosphorylated. Additionally, the serine was found to constitute 0.35% (by weight) of this beta-lactamase enzyme. Using this, calculate the molecular weight of this enzyme and estimate the number of amino acids present in the polypeptide.arrow_forward
- Based on your results from the Mannitol Salt Agar (MSA) media, which of your bacteria were mannitol fermenters and which were not mannitol fermenters?arrow_forwardhelp tutor pleasearrow_forwardQ8. A researcher wants to study the effectiveness of a pill intended to reduce stomach heartburn in pregnant women. The researcher chooses randomly 400 women to participate in this experiment for 9 months of their pregnancy period. They all need to have the same diet. The researcher designs two groups of 200 participants: One group take the real medication intended to reduce heartburn, while the other group take placebo medication. In this study what are: Independent variable: Dependent variable: Control variable: Experimental group: " Control group: If the participants do not know who is consuming the real pills and who is consuming the sugar pills. This study is It happens that 40% of the participants do not find the treatment helpful and drop out after 6 months. The researcher throws out the data from subjects that drop out. What type of bias is there in this study? If the company who makes the medication funds this research, what type of bias might exist in this research work?arrow_forward
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningBiology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage Learning
- Biology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxBiology: The Dynamic Science (MindTap Course List)BiologyISBN:9781305389892Author:Peter J. Russell, Paul E. Hertz, Beverly McMillanPublisher:Cengage LearningConcepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax College





