
Concept explainers
Discuss how a hypothesis can become a theory. Can a theory become a law? Explain.

Interpretation:
It needs to be discussed as to how a hypothesis can become a theory and a theory can become a law. It implies that we need to identify interrelationship or interdependencies between Hypothesis, Theory and Law.
Concept Introduction:
- Hypothesis.
- Hypothesis is a calculation made from the gathered data.
- It is the process of observing things and trying to correlate the observation with the phenomenon.
- The hypothesis thus madeis used to explain something.
- Theories.
- Hypothesis forms the basis of formation of theories.
- Generalized statements are created from the hypothesis. These statements can be either equations or principles. That is when a hypothesis becomes a theory.
- In scientific language, theory is simply referred to as a rule or a law.
- Law.
- In common terms, a law is a rule created to perform a certain act or process. Likewise, in scientific terms, law refers to specific rules that are to be applied to be able to perform certain chemical, scientific or mathematical processes.
- Natural law is also referred to as scientific law.
- It is necessary for any law to be applied for certain specific conditions only.
- Any such law always represents cause-effect relationships.
- A statement must portray certain aspects of the universe for it to be a scientific law and must be based on repeated experimental evidence.
- Any scientific or a natural law always takesthe form of an expression, a statement or a mathematical equation.
Answer to Problem 1ALQ
There is always interdependence between a Hypothesis, a Theory and a Law. A Hypothesis becomes a Theory and a Theory is made up of thousands of Laws.
Explanation of Solution
A hypothesis is one that is untested and is mostly subjective. It describes the thought process of how a scientist thinks about a certain thing. However, a theory is tested and is mostly objective in nature. It helps one identify how one can confirm something to be, now or in the future. Theory is true all the time. Hypotheses transform into theories whenit is backed up with proper evidences.
Hypothesis can be a guess of any type. One can estimate events, facts, and eventheories. Theories are mostly well-defined sophisticated models that are built and undergo refined processes. A hypothesis is, however, made to be as precise as possible. Much of the hypothesizing can be transformed into a theory, and thre is no need for them to have a one-to-one correlation.
Hypothesis is only an idea or a proposal that one can come up with in order to try and elucidate a set of observations. A hypothesis, however, needs to always have the following characteristics:
- It must be possible to falsify or disprove a hypothesis.
- It must be testable.
- It must possess a predictive values.
Let us now discuss about how a theory transforms into a law:
Just as a building is made up of many bricks, nails, windows, cement, doors, concrete, etc and as an encyclopaedia is made up of thousands of different topics and information, a theory is also composed of scientific facts, laws, and other evidences.
In the case of a scientific law, it is always applies to all the situations, places, almost at all times. For instance, Ohm's Law is given by the formula I=V/R, which implies that in an electrical circuit, the current that flows through it is always equal to the ratio of voltage to the resistance. This law is significant in case one is working with electricity since it applies to any electrical circuit, but it does not divulge details on what the amperage is or why it is equal to voltage divided by resistance or what can be done with the given information.
To summarise, laws tell us what is most likely to or will definitely happen. Theories, on the other hand, explain how certain things happen and why.
There is always interdependence between a Hypothesis, a Theory and a Law. Hypothesis becomes a Theory and a Theory is made up of thousands of Laws.
Want to see more full solutions like this?
Chapter 1 Solutions
EBK INTRODUCTORY CHEMISTRY
- Consider the following gas chromatographs of Compound A, Compound B, and a mixture of Compounds A and B. Inject A B mixture Area= 9 Area = 5 Area = 3 Area Inject . མི། Inject J2 What is the percentage of Compound B in the the mixture?arrow_forwardRank these according to stability. CH3 H3C CH3 1 CH3 H3C 1 most stable, 3 least stable O 1 most stable, 2 least stable 2 most stable, 1 least stable O2 most stable, 3 least stable O3 most stable, 2 least stable O3 most stable, 1 least stable CH3 2 CH3 CH3 H₂C CH3 3 CH3 CHarrow_forwardConsider this IR and NMR: INFRARED SPECTRUM TRANSMITTANCE 0.8- 0.6 0.4 0.2 3000 10 9 8 00 HSP-00-541 7 CO 6 2000 Wavenumber (cm-1) сл 5 ppm 4 M Which compound gave rise to these spectra? N 1000 1 0arrow_forward
- Consider this reaction (molecular weights are under each compound): HC=CH + 2 HCI --> C2H4Cl 2 MW = 26 36.5 99 If 4.4 g of HC=CH are reacted with 110 mL of a 2.3 M HCI solution, and 6.0 g of product are actually produced, what is the percent yield?arrow_forwardWhat is the name of the major product of this reaction? OH CH3 H₂SO4, heat 1-methylcyclohexene O2-methyl-1-cyclohexene O 3-mthylcyclohexene 1-methyl-2-cyclohexenearrow_forwardWe added a brown solution of Br2 to one of our products, and the brown color disappeared. This indicated that our product wasarrow_forward
- Rank the following according to reactivity toward nitration: a) benzene b) bromobenzene c) nitrobenzene d) phenol Od) greatest, c) least Od) greatest, b) least Od) greatest, a) least a) greatest, b) least a) greatest, c) least Oa) greatest, d) least Ob) greatest, a) least O b) greatest, c) least Ob) greatest, d) least O c) greatest, a) least O c) greatest, b) least O c) greatest, d) leastarrow_forwardO-Nitrophenol was distilled over with the steam in our experiment while the other isomer did not. This is due to: O intramolecular hydrogen bonding in the ortho isomer O intermolecular hydrogen bonding in the the ortho isomer O the ortho isomer has a lower density O the ortho isomer has a lower molecular weightarrow_forwardK 44% Problem 68 of 15 Submit Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. :6: :: :CI: CI CI: :0:0 Select to Add Arrows Select to Add Arrows H H Cl CI: CI CI: Select to Add Arrows Select to Add Arrows H :CI: Alarrow_forward
- I I H :0: Submit Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. 0:0 :0: CI ΑΙ :CI: :CI: :0: CI Select to Add Arrows Select to Add Arrows cl. :0: Cl © ハ CI:: CI H CO Select to Add Arrows Select to Add Arrows 10: AI ::arrow_forwardOrder the following compounds from slowest to fastest in a nucleophilic acyl substitution reaction. ii 요 OB D A E C OCE Darrow_forwardI need the most help figuring out how to find [I^-] mol/ L, [S2O8^2-] mol/L. 1st and 2nd Blank columns.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning


