(a)
Interpretation:
Whether the ball float or not if it is evacuated is to be determined.
Concept introduction:
Density is defined as mass per unit volume. Mass and volume are physical quantities and the units of mass and volume are fundamental units. Density is the ratio of mass to the volume. The unit of volume is derived from the units of mass and volume. The SI unit of density is
An object can float in the air if its density is less than the density of air.
(a)
Answer to Problem 1.78P
The ball will float if it is evacuated.
Explanation of Solution
The density of air is
Substitute
The ball float will float because the density of the ball is less than the air.
When the density of an object is less than the density of air, then that object floats in the air.
(b)
Interpretation:
Whether the ball filled with carbon dioxide will float or not is to be determined.
Concept introduction:
Density is defined as mass per unit volume. Mass and volume are physical quantities and the units of mass and volume are fundamental units. Density is the ratio of mass to the volume. The unit of volume is derived from the units of mass and volume. The SI unit of density is
An object can float in the air if its density is less than the density of air.
(b)
Answer to Problem 1.78P
The ball filled with carbon dioxide will not float.
Explanation of Solution
The density of air is
The density of carbon dioxide is greater than the density of air and therefore the ball filled with carbon dioxide will not float.
When the density of an object is less than the density of air, then that object floats in the air.
(c)
Interpretation:
Whether the ball filled with hydrogen will float or not is to be determined.
Concept introduction:
Density is defined as mass per unit volume. Mass and volume are physical quantities and the units of mass and volume are fundamental units. Density is the ratio of mass to the volume. The unit of volume is derived from the units of mass and volume. The SI unit of density is
An object can float in the air if its density is less than the density of air.
(c)
Answer to Problem 1.78P
The ball filled with hydrogen will float.
Explanation of Solution
The density of air is
The density of the ball filled with hydrogen is calculated as follows:
The density of ball filled with hydrogen is less than the density of air and therefore the ball filled with hydrogen will float.
When the density of an object is less than the density of air, then that object floats in the air.
(d)
Interpretation:
Whether the ball filled with oxygen will float or not is to be determined.
Concept introduction:
Density is defined as mass per unit volume. Mass and volume are physical quantities and the units of mass and volume are fundamental units. Density is the ratio of mass to the volume. The unit of volume is derived from the units of mass and volume. The SI unit of density is
An object can float in the air if its density is less than the density of air.
(d)
Answer to Problem 1.78P
The ball filled with oxygen will not float.
Explanation of Solution
The density of air is
The density of oxygen is greater than the density of air and therefore the ball filled with oxygen will not float.
When the density of an object is less than the density of air, then that object floats in the air.
(e)
Interpretation:
Whether the ball filled with nitrogen will float or not is to be determined.
Concept introduction:
Density is defined as mass per unit volume. Mass and volume are physical quantities and the units of mass and volume are fundamental units. Density is the ratio of mass to the volume. The unit of volume is derived from the units of mass and volume. The SI unit of density is
An object can float in the air if its density is less than the density of air.
(e)
Answer to Problem 1.78P
The ball filled with nitrogen will not float but sink.
Explanation of Solution
The density of air is
The density of the ball filled with nitrogen is calculated as follows:
The density of ball filled with nitrogen is greater than the density of air and therefore the ball filled with nitrogen will not float.
When the density of an object is less than the density of air, then that object floats in the air.
(f)
Interpretation:
The weight that must be added to make it sink is to be calculated.
Concept introduction:
Density is defined as mass per unit volume. Mass and volume are physical quantities and the units of mass and volume are fundamental units. Density is the ratio of mass to the volume. The unit of volume is derived from the units of mass and volume. The SI unit of density is
An object can float in the air if its density is less than the density of air.
(f)
Answer to Problem 1.78P
Explanation of Solution
Rearrange the equation (1) to calculate the mass required of ball and gas to sink.
Substitute
The mass required of ball and gas to sink is
Therefore
Rearrange the equation (1) to calculate the mass of hydrogen in the ball.
Substitute
The mass of hydrogen is
The mass required of ball and gas to sink is
Therefore
When the density of an object is less than the density of air, then that object floats in the air.
Want to see more full solutions like this?
Chapter 1 Solutions
CHEMISTRY(LOOSELEAF) W/CONNECT+EBOOK
- In the phase diagram of steel (two components Fe and C), region A is the gamma austenite solid and region B contains the gamma solid and liquid. Indicate the degrees of freedom that the fields A and B have,arrow_forwardFor a condensed binary system in equilibrium at constant pressure, indicate the maximum number of phases that can exist.arrow_forwardPart V. Label ad match the carbons in compounds Jane and Diane w/ the corresponding peak no. in the Spectra (Note: use the given peak no. To label the carbons, other peak no are intentionally omitted) 7 4 2 -0.13 -0.12 -0.11 -0.10 -0.08 8 CI Jane 1 -0.09 5 210 200 190 180 170 160 150 140 130 120 110 100 -8 90 f1 (ppm) 11 8 172.4 172.0 f1 (ppr HO CI NH Diane 7 3 11 80 80 -80 -R 70 60 60 2 5 -8 50 40 8. 170 160 150 140 130 120 110 100 90 -0 80 70 20 f1 (ppm) 15 30 -20 20 -60 60 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 -0.00 -0.01 10 -0.17 16 15 56 16 -0.16 -0.15 -0.14 -0.13 -0.12 -0.11 -0.10 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 17.8 17.6 17.4 17.2 17.0 f1 (ppm) -0.03 -0.02 550 106 40 30 20 20 -0.01 -0.00 F-0.01 10 0arrow_forward
- n Feb 3 A T + 4. (2 pts) Draw the structure of the major component of the Limonene isolated. Explain how you confirmed the structure. 5. (2 pts) Draw the fragment corresponding to the base peak in the Mass spectrum of Limonene. 6. (1 pts) Predict the 1H NMR spectral data of R-Limonene. Proton NMR: 5.3 pon multiplet (H Ringarrow_forwardPart VI. Ca H 10 O is the molecular formula of compound Tom and gives the in the table below. Give a possible structure for compound Tom. 13C Signals summarized C1 C2 C3 C4 C5 C6 C7 13C shift (ppm) 23.5 27.0 33.0 35.8 127 162 205 DEPT-90 + DEPT-135 + +arrow_forward2. Using the following data to calculate the value of AvapH o of water at 298K. AvapH o of water at 373K is 40.7 kJ/mol; molar heat capacity of liquid water at constant pressure is 75.2J mol-1 K-1 and molar heat capacity of water vapor at constant pressure is 33.6 J mol-1 K-1.arrow_forward
- Part VII. Below are the 'HNMR 13 3 C-NMR, COSY 2D- NMR, and HSQC 20-NMR (Similar with HETCOR but axes are reversed) spectra of an organic compound with molecular formula C6H13 O. Assign chemical shift values to the H and c atoms of the compound. Find the structure. Show complete solutions. Predicted 1H NMR Spectrum ли 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 f1 (ppm)arrow_forward3. Draw the expanded structural formula, the condensed structural formula, and the skeletal structural formula for 2-pentene. expanded structure: Condensed structure: Skeletal formula: 4. Draw the expanded structural formula, the condensed structural formula, and the skeletal structural formula for 2-methyl-3-heptene. expanded structure: Condensed structure: Skeletal formula: following structurearrow_forwardPart IV. Propose a plausible Structure w/ the following descriptions: a) A 5-carbon hydrocarbon w/ a single peak in its proton decoupled the DEPT-135 Spectrum shows a negative peak C-NMR spectrum where b) what cyclohexane dione isomer gives the largest no. Of 13C NMR signals? c) C5H120 (5-carbon alcohol) w/ most deshielded carbon absent in any of its DEPT Spectivaarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY