CHEMISTRY(LOOSELEAF) W/CONNECT+EBOOK
CHEMISTRY(LOOSELEAF) W/CONNECT+EBOOK
7th Edition
ISBN: 9781259712500
Author: SILBERBERG
Publisher: MCG CUSTOM
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 1, Problem 1.53P

(a)

Interpretation Introduction

Interpretation:

In 5.08 significant zeroes is to be underlined.

Concept introduction:

Significant figures of a number are the digits which carry meaningful contribution to its measurement resolution. The rightmost digit of the quantity is the most uncertain digit. The number of certain and uncertain digit in a quantity is considered as significant figures. The digit with a higher number of significant figures has a higher certainty of measurement.

To determine the number of significant figures in a quantity following steps are followed.

1. The quantity must has a decimal point.

2. Start counting from the left and proceed towards the right until the first nonzero digit is encountered. All nonzero digit and the zeroes between two nonzero digits are considered as significant figures. For example, 0.0000765 has three significant figures and 7009 has four significant figures.

3. Zeroes after a decimal point are significant figures. For example, 42.0 have three significant figures.

4. Trailing zeroes that do nothing but are used to set a decimal point are non-significant figures. However, exponential notation can be used to avoid confusion. For example, 4300 has 3 significant figures. It can be expressed in scientific notation as 4.30×103 or

4.300×103. The number of significant figures in 4.30×103 and 4.300×103 is 3 and 4 respectively.

5. Zeroes present before a trailing decimal point are significant figures. For example, 3200 has only two significant figures but 3200. has 4 significant figures.

(b)

Interpretation Introduction

Interpretation:

In 508 significant zeroes is to be underlined.

Concept introduction:

Significant figures of a number are the digits which carry meaningful contribution to its measurement resolution. The rightmost digit of the quantity is the most uncertain digit.

The number of certain and uncertain digit in a quantity is considered as significant figures. The digit with a higher number of significant figures has a higher certainty of measurement.

To determine the number of significant figures in a quantity following steps are followed.

1. The quantity must has a decimal point.

2. Start counting from the left and proceed towards the right until the first nonzero digit is encountered. All nonzero digit and the zeroes between two nonzero digits are considered as significant figures. For example, 0.0000765 has three significant figures and 7009 has four significant figures.

3. Zeroes after a decimal point are significant figures. For example, 42.0 have three significant figures.

4. Trailing zeroes that do nothing but are used to set a decimal point are non-significant figures. However, exponential notation can be used to avoid confusion. For example, 4300 has 3 significant figures. It can be expressed in scientific notation as 4.30×103 or

4.300×103. The number of significant figures in 4.30×103 and 4.300×103 is 3 and 4 respectively.

5. Zeroes present before a trailing decimal point are significant figures. For example, 3200 has only two significant figures but 3200. has 4 significant figures.

(c)

Interpretation Introduction

Interpretation:

In 5.080×103 significant zeroes is to be underlined.

Concept introduction:

Significant figures of a number are the digits which carry meaningful contribution to its measurement resolution. The rightmost digit of the quantity is the most uncertain digit.

The number of certain and uncertain digit in a quantity is considered as significant figures. The digit with a higher number of significant figures has a higher certainty of measurement.

To determine the number of significant figures in a quantity following steps are followed.

1. The quantity must has a decimal point.

2. Start counting from the left and proceed towards the right until the first nonzero digit is encountered. All nonzero digit and the zeroes between two nonzero digits are considered as significant figures. For example, 0.0000765 has three significant figures and 7009 has four significant figures.

3. Zeroes after a decimal point are significant figures. For example, 42.0 have three significant figures.

4. Trailing zeroes that do nothing but are used to set a decimal point are non-significant figures. However, exponential notation can be used to avoid confusion. For example, 4300 has 3 significant figures. It can be expressed in scientific notation as 4.30×103 or

4.300×103. The number of significant figures in 4.30×103 and 4.300×103 is 3 and 4 respectively.

5. Zeroes present before a trailing decimal point are significant figures. For example, 3200 has only two significant figures but 3200. has 4 significant figures.

(d)

Interpretation Introduction

Interpretation:

In 0.05080 significant zeroes is to be underlined.

Concept introduction:

Significant figures of a number are the digits which carry meaningful contribution to its measurement resolution. The rightmost digit of the quantity is the most uncertain digit.

The number of certain and uncertain digit in a quantity is considered as significant figures. The digit with a higher number of significant figures has a higher certainty of measurement.

To determine the number of significant figures in a quantity following steps are followed.

1. The quantity must has a decimal point.

2. Start counting from the left and proceed towards the right until the first nonzero digit is encountered. All nonzero digit and the zeroes between two nonzero digits are considered as significant figures. For example, 0.0000765 has three significant figures and 7009 has four significant figures.

3. Zeroes after a decimal point are significant figures. For example, 42.0 have three significant figures.

4. Trailing zeroes that do nothing but are used to set a decimal point are non-significant figures. However, exponential notation can be used to avoid confusion. For example, 4300 has 3 significant figures. It can be expressed in scientific notation as 4.30×103 or

4.300×103. The number of significant figures in 4.30×103 and 4.300×103 is 3 and 4 respectively.

5. Zeroes present before a trailing decimal point are significant figures. For example, 3200 has only two significant figures but 3200. has 4 significant figures.

Blurred answer
Students have asked these similar questions
ii) Molecular ion peak :the peak corresponding to the intact molecule (with a positive charge) What would the base peak and Molecular ion peaks when isobutane is subjected to Mass spectrometry? Draw the structures and write the molecular weights of the fragments. Circle most stable cation a) tert-butyl cation b) Isopropyl cation c) Ethyl cation. d) Methyl cation 6. What does a loss of 15 represent in Mass spectrum? a fragment of the molecule with a mass of 15 atomic mass units has been lost during the ionization Process 7. Write the isotopes and their % abundance of isotopes of i) Cl
Choose a number and match the atomic number to your element on the periodic table.  For your element, write each of these features on a side of your figure. 1. Element Name and symbol 2. Family and group 3.  What is it used for? 4. Sketch the Valence electron orbital 5. What ions formed. What is it's block on the periodic table. 6. Common compounds 7. Atomic number 8. Mass number 9. Number of neutrons- (show calculations) 10. Sketch the spectral display of the element 11.Properties 12. Electron configuration 13. Submit a video of a 3-meter toss in slow-mo
[In this question, there are multiple answers to type in a "fill-in-the-blank" fashion - in each case, type in a whole number.] Consider using Slater's Rules to calculate the shielding factor (S) for the last electron in silicon (Si). There will be electrons with a 0.35 S-multiplier, electrons with a 0.85 S-multiplier, and electrons with a 1.00 S-multiplier.

Chapter 1 Solutions

CHEMISTRY(LOOSELEAF) W/CONNECT+EBOOK

Ch. 1.4 - A landowner wants to spray herbicide on a field...Ch. 1.4 - Prob. 1.6BFPCh. 1.4 - Prob. 1.7AFPCh. 1.4 - Prob. 1.7BFPCh. 1.4 - Mercury melts at 234 K, lower than any other pure...Ch. 1.4 - Prob. 1.8BFPCh. 1.5 - For each of the following quantities, underline...Ch. 1.5 - Prob. 1.9BFPCh. 1.5 - Prob. 1.10AFPCh. 1.5 - Prob. 1.10BFPCh. 1 - Prob. 1.1PCh. 1 - Describe solids, liquids, and gases in terms of...Ch. 1 - Use your descriptions from Problem 1.2 to identify...Ch. 1 - Define physical property and chemical property....Ch. 1 - Prob. 1.5PCh. 1 - Which of the following is a chemical change?...Ch. 1 - Which of the following changes can be reversed by...Ch. 1 - Prob. 1.8PCh. 1 - Prob. 1.9PCh. 1 - The alchemical, medical, and technological...Ch. 1 - How did the phlogiston theory explain combustion? Ch. 1 - Prob. 1.12PCh. 1 - Prob. 1.13PCh. 1 - Prob. 1.14PCh. 1 - Prob. 1.15PCh. 1 - Prob. 1.16PCh. 1 - Prob. 1.17PCh. 1 - Prob. 1.18PCh. 1 - Prob. 1.19PCh. 1 - For each of the following cases, state whether the...Ch. 1 - Prob. 1.21PCh. 1 - Prob. 1.22PCh. 1 - Prob. 1.23PCh. 1 - Prob. 1.24PCh. 1 - Prob. 1.25PCh. 1 - Prob. 1.26PCh. 1 - Prob. 1.27PCh. 1 - What is the length in inches (in) of a 100.-m...Ch. 1 - Prob. 1.29PCh. 1 - Prob. 1.30PCh. 1 - Prob. 1.31PCh. 1 - Prob. 1.32PCh. 1 - Prob. 1.33PCh. 1 - Prob. 1.34PCh. 1 - The speed of light in a vacuum is 2.998 × 108 m/s....Ch. 1 - Prob. 1.36PCh. 1 - Prob. 1.37PCh. 1 - Prob. 1.38PCh. 1 - Prob. 1.39PCh. 1 - A small cube of aluminum measures 15.6 mm on a...Ch. 1 - A steel ball-bearing with a circumference of 32.5...Ch. 1 - Prob. 1.42PCh. 1 - Prob. 1.43PCh. 1 - A 25.0-g sample of each of three unknown metals is...Ch. 1 - Prob. 1.45PCh. 1 - Prob. 1.46PCh. 1 - Prob. 1.47PCh. 1 - Prob. 1.48PCh. 1 - Prob. 1.49PCh. 1 - Prob. 1.50PCh. 1 - Prob. 1.51PCh. 1 - Prob. 1.52PCh. 1 - Prob. 1.53PCh. 1 - Prob. 1.54PCh. 1 - Prob. 1.55PCh. 1 - Round off each number in the following calculation...Ch. 1 - Prob. 1.57PCh. 1 - Prob. 1.58PCh. 1 - Prob. 1.59PCh. 1 - Prob. 1.60PCh. 1 - Write the following numbers in scientific...Ch. 1 - Prob. 1.62PCh. 1 - Prob. 1.63PCh. 1 - Prob. 1.64PCh. 1 - Prob. 1.65PCh. 1 - Prob. 1.66PCh. 1 - Prob. 1.67PCh. 1 - Prob. 1.68PCh. 1 - Which of the following include exact numbers? The...Ch. 1 - Prob. 1.70PCh. 1 - Prob. 1.71PCh. 1 - Prob. 1.72PCh. 1 - The following dartboards illustrate the types of...Ch. 1 - Prob. 1.74PCh. 1 - Prob. 1.75PCh. 1 - Bromine is used to prepare the pesticide methyl...Ch. 1 - Prob. 1.77PCh. 1 - Prob. 1.78PCh. 1 - Prob. 1.79PCh. 1 - Prob. 1.80PCh. 1 - Prob. 1.81PCh. 1 - Prob. 1.82PCh. 1 - Prob. 1.83PCh. 1 - Prob. 1.84PCh. 1 - Prob. 1.85PCh. 1 - Prob. 1.86P
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Measurement and Significant Figures; Author: Professor Dave Explains;https://www.youtube.com/watch?v=Gn97hpEkTiM;License: Standard YouTube License, CC-BY
Trigonometry: Radians & Degrees (Section 3.2); Author: Math TV with Professor V;https://www.youtube.com/watch?v=U5a9e1J_V1Y;License: Standard YouTube License, CC-BY