
(a)
Interpretation:
Whether the ball float or not if it is evacuated is to be determined.
Concept introduction:
Density is defined as mass per unit volume. Mass and volume are physical quantities and the units of mass and volume are fundamental units. Density is the ratio of mass to the volume. The unit of volume is derived from the units of mass and volume. The SI unit of density is
An object can float in the air if its density is less than the density of air.
(a)

Answer to Problem 1.78P
The ball will float if it is evacuated.
Explanation of Solution
The density of air is
Substitute
The ball float will float because the density of the ball is less than the air.
When the density of an object is less than the density of air, then that object floats in the air.
(b)
Interpretation:
Whether the ball filled with carbon dioxide will float or not is to be determined.
Concept introduction:
Density is defined as mass per unit volume. Mass and volume are physical quantities and the units of mass and volume are fundamental units. Density is the ratio of mass to the volume. The unit of volume is derived from the units of mass and volume. The SI unit of density is
An object can float in the air if its density is less than the density of air.
(b)

Answer to Problem 1.78P
The ball filled with carbon dioxide will not float.
Explanation of Solution
The density of air is
The density of carbon dioxide is greater than the density of air and therefore the ball filled with carbon dioxide will not float.
When the density of an object is less than the density of air, then that object floats in the air.
(c)
Interpretation:
Whether the ball filled with hydrogen will float or not is to be determined.
Concept introduction:
Density is defined as mass per unit volume. Mass and volume are physical quantities and the units of mass and volume are fundamental units. Density is the ratio of mass to the volume. The unit of volume is derived from the units of mass and volume. The SI unit of density is
An object can float in the air if its density is less than the density of air.
(c)

Answer to Problem 1.78P
The ball filled with hydrogen will float.
Explanation of Solution
The density of air is
The density of the ball filled with hydrogen is calculated as follows:
The density of ball filled with hydrogen is less than the density of air and therefore the ball filled with hydrogen will float.
When the density of an object is less than the density of air, then that object floats in the air.
(d)
Interpretation:
Whether the ball filled with oxygen will float or not is to be determined.
Concept introduction:
Density is defined as mass per unit volume. Mass and volume are physical quantities and the units of mass and volume are fundamental units. Density is the ratio of mass to the volume. The unit of volume is derived from the units of mass and volume. The SI unit of density is
An object can float in the air if its density is less than the density of air.
(d)

Answer to Problem 1.78P
The ball filled with oxygen will not float.
Explanation of Solution
The density of air is
The density of oxygen is greater than the density of air and therefore the ball filled with oxygen will not float.
When the density of an object is less than the density of air, then that object floats in the air.
(e)
Interpretation:
Whether the ball filled with nitrogen will float or not is to be determined.
Concept introduction:
Density is defined as mass per unit volume. Mass and volume are physical quantities and the units of mass and volume are fundamental units. Density is the ratio of mass to the volume. The unit of volume is derived from the units of mass and volume. The SI unit of density is
An object can float in the air if its density is less than the density of air.
(e)

Answer to Problem 1.78P
The ball filled with nitrogen will not float but sink.
Explanation of Solution
The density of air is
The density of the ball filled with nitrogen is calculated as follows:
The density of ball filled with nitrogen is greater than the density of air and therefore the ball filled with nitrogen will not float.
When the density of an object is less than the density of air, then that object floats in the air.
(f)
Interpretation:
The weight that must be added to make it sink is to be calculated.
Concept introduction:
Density is defined as mass per unit volume. Mass and volume are physical quantities and the units of mass and volume are fundamental units. Density is the ratio of mass to the volume. The unit of volume is derived from the units of mass and volume. The SI unit of density is
An object can float in the air if its density is less than the density of air.
(f)

Answer to Problem 1.78P
Explanation of Solution
Rearrange the equation (1) to calculate the mass required of ball and gas to sink.
Substitute
The mass required of ball and gas to sink is
Therefore
Rearrange the equation (1) to calculate the mass of hydrogen in the ball.
Substitute
The mass of hydrogen is
The mass required of ball and gas to sink is
Therefore
When the density of an object is less than the density of air, then that object floats in the air.
Want to see more full solutions like this?
Chapter 1 Solutions
Chemistry: The Molecular Nature of Matter and Change
- Which representation(s) show polymer structures that are likely to result in rigid, hard materials and those that are likely to result in flexible, stretchable, soft materials?arrow_forward3. Enter the molecular weight of the product obtained from the Williamson Ether Synthesis? OH OH & OH excess CH3l Ag₂Oarrow_forwardPlease answer 1, 2 and 3 on the endarrow_forward
- In the box below, specify which of the given compounds are very soluble in polar aprotic solvents. You may select more than one compound. Choose one or more: NaCl NH4Cl CH3CH2CH2CH2CH2CN CH3CH2OH hexan-2-one NaOH CH3SCH3arrow_forwardOn the following structure, select all of the atoms that could ACCEPT a hydrogen bond. Ignore possible complications of aromaticity. When selecting be sure to click on the center of the atom.arrow_forwardRank the compounds below from lowest to highest melting point.arrow_forward
- 18 Question (1 point) Draw the line structure form of the given partially condensed structure in the box provided. :ÖH HC HC H2 ΙΩ Н2 CH2 CH3 CH3 partially condensed formarrow_forwardsomeone else has already submitted the same question on here and it was the incorrect answer.arrow_forwardThe reaction: 2NO2(g) ⇌ N2O4(g) is an exothermic reaction, ΔH=-58.0 kJ/molrxn at 0°C the KP is 58.If the initial partial pressures of both NO2(g) and N2O4(g) are 2.00 atm:A) Is the reaction at equilibrium? If not, what is the value of Q? B) Which direction will the reaction go to reach equilibrium? C) Use an ICE table to find the equilibrium pressures.arrow_forward
- The dissociation of the weak acid, nitrous acid, HNO2, takes place according to the reaction: HNO2 (aq) ⇌ H+(aq) + NO2–(aq) K=7.2 X 10-4 When 1.00 mole of HNO2 is added to 1.00 L of water, the H+ concentration at equilibrium is 0.0265 M.A) Calculate the value of Q if 1.00 L of water is added? B) How will reaction shift if 1.00 L of water is added?arrow_forwardSuppose a certain copolymer elastomeric material “styrene-butadiene rubber”) contains styrene ("S") monomers –(C8H8)– and butadiene ("B") monomers –(C4H6)– and that their numerical ratio S:B = 1:8. What is the mass ratio mS:mB of the two monomers in the material? What is the molecular mass M of a macromolecule of this copolymer with degree of polymerization n = 60,000? Data: AC = 12.01 u, AH = 1.008 u.arrow_forwardLab Questions from Lab: Gravimetric Determination of Calcium as CaC2O4•H2O What is the purpose of the methyl red indicator? Why does a color change to yellow tell you that the reaction is complete? Why is the precipitate rinsed with ice-cold water in step 4? Why not room temperature or hot water? Why is it important that the funnels be placed in a desiccator before weighing (steps 1 and 5)?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





