Lehninger Principles of Biochemistry
Lehninger Principles of Biochemistry
7th Edition
ISBN: 9781464126116
Author: David L. Nelson, Michael M. Cox
Publisher: W. H. Freeman
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 1, Problem 16DAP

(a1)

Summary Introduction

To determine: The relation between MRS and ∆G˚ of the binding reaction.

Introduction: Various compounds taste sweet. Some of them sweet more, while some of them sweet lesser. The sweetness is related to their structures and interaction with taste bud receptors. Molar relative sweetness (MRS) is the measure of sweetness of the compound relative to sweetness of sucrose.

(a2)

Summary Introduction

To determine: Whether the more negative value of ∆G˚ will correspond to a higher or lower MRS.

Introduction: Various compounds taste sweet. Some of them sweet more, while some of them sweet less. The sweetness is related to their structures and taste bud receptors on which the compounds bind. Molar relative sweetness (MRS) is the measure of sweetness of the compound relative to sweetness of sucrose.

(b)

Summary Introduction

To explain: The uses of predicting the sweetness of molecules by computer model instead of a human or animal-based taste assay.

Introduction: Various compounds taste sweet. Some of them sweet more, while some of them sweet lesser. The sweetness is related to their structures and taste bud receptors. The assay that requires less time to generate valuable result would be convenient and desirable.

(c)

Summary Introduction

To determine: The AH-B groups in each of the given molecules when the length of a typical single bond is about 0.15 nm

Introduction: Various compounds taste sweet. Some of them sweet more, while some of them sweet lesser. The sweetness is related to their structures and taste bud receptors.

(d)

Summary Introduction

To determine: The two objections to the statement that molecules containing an AH-B structure will taste sweet are to be determined.

Introduction: Various compounds taste sweet. Some of them sweet more, while some of them sweet lesser. The sweetness is related to their structures and taste bud receptors.

(e)

Summary Introduction

To determine: The two molecules out of given molecules that can be used to explain the difference in MRS and ∆G˚ and their relation to AH-B model.

Introduction: Various compounds taste sweet. Some of them sweet more, while some of them sweet lesser. The sweetness is related to their structures and taste bud receptors. Molar relative sweetness (MRS) is the measure of sweetness of the compound relative to sweetness of sucrose.

(f)

Summary Introduction

To determine: The two examples that can be used to argue the AH-B model is unable to explain the observed differences in sweetness.

Introduction: Various compounds taste sweet. Some of them sweet more, while some of them sweet lesser. The sweetness is related to their structures and taste bud receptors. Molar relative sweetness (MRS) is the measure of sweetness of the compound relative to sweetness of sucrose.

(g)

Summary Introduction

To determine: Whether need to test the model against a different set of molecules from the set it was trained on.

Introduction: Various compounds taste sweet. Some of them sweet more, while some of them sweet lesser. The sweetness is related to their structures and taste bud receptors.

(h)

Summary Introduction

To determine: The resulting error in MRS values as it has found that the predicted ∆G˚ values for the test set differed from the actual values by, on average, 1.3 kcal/mol.

Introduction: Various compounds taste sweet. Some of them sweet more, while some of them sweet lesser. The sweetness is related to their structures and taste bud receptors. Molar relative sweetness (MRS) is the measure of sweetness of the compound relative to sweetness of sucrose.

Blurred answer
Students have asked these similar questions
Why the 2nd choice is correct?
a) What are the differences between the Direct & Indirect Immunofluorescence Assays? (0.5 mark) b) What are the advantages of the Indirect Immunofluorescence Assays? (0.5 mark) c) A Super-Resolution Imaging Technique was developed in 2018 using imidazole, a His-tag ligand conjugated with a fluorophore to report the presence of a recombinant His-tag protein target, (Sci Rep, 2018, 8:5507). How does this technique improve the image quality? (2 marks)
a) What are the differences between the Direct & Indirect Immunofluorescence Assays?  b) What are the advantages of the Indirect Immunofluorescence Assays?  c) A Super-Resolution Imaging Technique was developed in 2018 using imidazole, a His-tag ligand conjugated with a fluorophore to report the presence of a recombinant His-tag protein target, (Sci Rep, 2018, 8:5507). How does this technique improve the image quality?
Knowledge Booster
Background pattern image
Biochemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biochemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Biochemistry
Biochemistry
ISBN:9781319114671
Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher:W. H. Freeman
Text book image
Lehninger Principles of Biochemistry
Biochemistry
ISBN:9781464126116
Author:David L. Nelson, Michael M. Cox
Publisher:W. H. Freeman
Text book image
Fundamentals of Biochemistry: Life at the Molecul...
Biochemistry
ISBN:9781118918401
Author:Donald Voet, Judith G. Voet, Charlotte W. Pratt
Publisher:WILEY
Text book image
Biochemistry
Biochemistry
ISBN:9781305961135
Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
Publisher:Cengage Learning
Text book image
Biochemistry
Biochemistry
ISBN:9781305577206
Author:Reginald H. Garrett, Charles M. Grisham
Publisher:Cengage Learning
Text book image
Fundamentals of General, Organic, and Biological ...
Biochemistry
ISBN:9780134015187
Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. Peterson
Publisher:PEARSON
Enzyme Kinetics; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=FXWZr3mscUo;License: Standard Youtube License