Concept explainers
(a1)
To determine: The relation between MRS and ∆G˚ of the binding reaction.
Introduction: Various compounds taste sweet. Some of them sweet more, while some of them sweet lesser. The sweetness is related to their structures and interaction with taste bud receptors. Molar relative sweetness (MRS) is the measure of sweetness of the compound relative to sweetness of sucrose.
(a2)
To determine: Whether the more negative value of ∆G˚ will correspond to a higher or lower MRS.
Introduction: Various compounds taste sweet. Some of them sweet more, while some of them sweet less. The sweetness is related to their structures and taste bud receptors on which the compounds bind. Molar relative sweetness (MRS) is the measure of sweetness of the compound relative to sweetness of sucrose.
(b)
To explain: The uses of predicting the sweetness of molecules by computer model instead of a human or animal-based taste assay.
Introduction: Various compounds taste sweet. Some of them sweet more, while some of them sweet lesser. The sweetness is related to their structures and taste bud receptors. The assay that requires less time to generate valuable result would be convenient and desirable.
(c)
To determine: The AH-B groups in each of the given molecules when the length of a typical single bond is about 0.15 nm
Introduction: Various compounds taste sweet. Some of them sweet more, while some of them sweet lesser. The sweetness is related to their structures and taste bud receptors.
(d)
To determine: The two objections to the statement that molecules containing an AH-B structure will taste sweet are to be determined.
Introduction: Various compounds taste sweet. Some of them sweet more, while some of them sweet lesser. The sweetness is related to their structures and taste bud receptors.
(e)
To determine: The two molecules out of given molecules that can be used to explain the difference in MRS and ∆G˚ and their relation to AH-B model.
Introduction: Various compounds taste sweet. Some of them sweet more, while some of them sweet lesser. The sweetness is related to their structures and taste bud receptors. Molar relative sweetness (MRS) is the measure of sweetness of the compound relative to sweetness of sucrose.
(f)
To determine: The two examples that can be used to argue the AH-B model is unable to explain the observed differences in sweetness.
Introduction: Various compounds taste sweet. Some of them sweet more, while some of them sweet lesser. The sweetness is related to their structures and taste bud receptors. Molar relative sweetness (MRS) is the measure of sweetness of the compound relative to sweetness of sucrose.
(g)
To determine: Whether need to test the model against a different set of molecules from the set it was trained on.
Introduction: Various compounds taste sweet. Some of them sweet more, while some of them sweet lesser. The sweetness is related to their structures and taste bud receptors.
(h)
To determine: The resulting error in MRS values as it has found that the predicted ∆G˚ values for the test set differed from the actual values by, on average, 1.3 kcal/mol.
Introduction: Various compounds taste sweet. Some of them sweet more, while some of them sweet lesser. The sweetness is related to their structures and taste bud receptors. Molar relative sweetness (MRS) is the measure of sweetness of the compound relative to sweetness of sucrose.
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
Loose-leaf Version for Lehninger Principles of Biochemistry 7E & SaplingPlus for Lehninger Principles of Biochemistry 7E (Six-Month Access)
- Biochemistry Please help. Thank you When carbamyl phosphate is joined to L-ornathine, where does the energy for the reaction come from?arrow_forwardBiochemistry Question Please help. Thank you What is the function of glutamate dehydrogenase?arrow_forwardBiochemistry Question Please help. Thank you How and why does a high protein diet affect the enzymes of the urea cycle?arrow_forward
- Biochemistry What is the importance of the glucose-alanine cycle?arrow_forwardBiochemistry Assuming 2.5 molecules of ATP per oxidation of NADH/(H+) and 1.5molecules of ATP per oxidation of FADH2, how many ATP are produced per molecule of pyruvate? Please help. Thank youarrow_forward1. How would you explain the term ‘good food’? 2. How would you define Nutrition? 3. Nutrients are generally categorised into two forms. Discuss.arrow_forward
- Biochemistry Question. Please help solve. Thank you! Based upon knowledge of oxidation of bioorganic compounds and howmuch energy is released during their oxidation, rank the following, from most to least, with respect to how much energy would be produced from each during their oxidation. Explain your placement for each one.arrow_forwardBiochemistry Question.For the metabolism of amino acids what is the first step for theirbreakdown? Why is it necessary for this breakdown product to be transported to the liver? For the catabolism of the carbon backbone of these amino acids, there are 7 entry points into the “standard” metabolic pathways. List these 7 entry points and which amino acids are metabolized to these entry points. Please help. Thank you!arrow_forwardBiochemistry Question. Please help. Thank you. You are studying pyruvate utilization in mammals for ATP production under aerobic conditions and have synthesized pyruvate with Carbon #1 labelled with radioactive C14. After only one complete cycle of the TCA cycle, which of the TCA cycle intermediates would be labeled with C14? Explain your answer. Interestingly, you find C14 being excreted in the urine. How does it get there?arrow_forward
- Biochemistry question. Please help with. Thanks in advance For each of the enzymes listed below, explain what the enzyme does including function, names (or structures) of the substrate and products and the pathway(s) (if applicable) it is/are found in. (a) ATP synthetase (b) succinate dehydrogenase (c) isocitrate lyase (d) acetyl CoA carboxylase (e) isocitrate dehydrogenase (f) malate dehydrogenasearrow_forwardDraw and name each alcohol and classify it as primary, secondary, or tertiary. Explain your answer thoroughly.arrow_forwardDraw the product of each reaction. If there are multiple products, draw only the major product. Explain your answer thoroughly.arrow_forward
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON