Concept explainers
(a)
Interpretation:
The average mass from each set of data is to be calculated. Also, the most accurate one is to be identified.
Concept introduction:
Precision is defined as the closeness of two measurements with each other. Accuracy refers to the closeness of the measured values to the standard or known value. Some errors also occur in the calculation of the measured quantities.
The two types of errors are as follows:
1. Systematic error: This error is a part of the experimental setup or faulty devices.
2. Random error: This error occurs always and is due to instruments’ precision.
Average mass is calculated by the sum of all the masses divided by the number of masses.
(b)
Interpretation:
The most precise data is to be identified. Also, whether the most precise data is equal to the most accurate data or not is to be determined.
Concept introduction:
Precision is defined as the closeness of two measurements with each other. Accuracy refers to the closeness of the measured values to the standard or known value. Some errors also occur in the calculation of the measured quantities.
The two types of errors are as follows:
1. Systematic error: This error is a part of the experimental setup or faulty devices.
2. Random error: This error occurs always and is due to instruments’ precision.
Average mass is calculated by the sum of all the masses divided by the number of masses.
(c)
Interpretation:
The most accurate and the most precise data is to be identified.
Concept introduction:
Precision is defined as the closeness of two measurements with each other. Accuracy refers to the closeness of the measured values to the standard or known value. Some errors also occur in the calculation of the measured quantities.
The two types of errors are as follows:
1. Systematic error: This error is a part of the experimental setup or faulty devices.
2. Random error: This error occurs always and is due to instruments’ precision.
Precision is estimated by the range of the data. The formula to calculate the range is as follows:
(d)
Interpretation:
The least accurate and the least precise is to be identified.
Concept introduction:
Precision is defined as the closeness of two measurements with each other. Accuracy refers to the closeness of the measured values to the standard or known value. Some errors also occur in the calculation of the measured quantities.
The two types of errors are as follows:
1. Systematic error: This error is a part of the experimental setup or faulty devices.
2. Random error: This error occurs always and is due to instruments’ precision.
Precision is estimated by the range of the data. The formula to calculate the range is as follows:

Want to see the full answer?
Check out a sample textbook solution
Chapter 1 Solutions
CHEMISTRY:MOLECULAR...V.2 W/ACCESS
- answer thisarrow_forwardplease add appropriate arrows and tell me in detail where to add which or draw itarrow_forwardPart 1. Draw monomer units of the following products and draw their reaction mechanism (with arrow pushing) Temporary cross-linked polymer Using: 4% polyvinyl alcohol+ methyl red + 4% sodium boratearrow_forward
- can you please answer both these questions and draw the neccesaryarrow_forwardcan you please give the answer for both these pictures. thankyouarrow_forwardPart 1. Draw monomer units of the following products and draw their reaction mechanism (with arrow pushing) | Bakelite like polymer Using: Resorcinol + NaOH + Formalinarrow_forward
- Question 19 0/2 pts 3 Details You have a mixture of sodium chloride (NaCl) and potassium chloride (KCl) dissolved in water and want to separate out the Cl- ions by precipitating them out using silver ions (Ag+). The chemical equation for the net ionic reaction of NaCl and KCl with silver nitrate, AgNO3, is shown below. Ag+(aq) + Cl(aq) → AgCl(s) The total mass of the NaCl/KCl mixture is 1.299 g. Adding 50.42 mL of 0.381 M solution precipitates out all of the Cl-. What are the masses of NaCl and KCl in the mixture? Atomic masses: g: Mass of NaCl g: Mass of KCL Ag = 107.868 g mol- 1 Cl = 35.453 g mol- 1 K = 39.098 g mol- N = 14.007 g mol−1 Na = 22.99 g mol−1 0 = 15.999 g mol 1 Question Help: ✓ Message instructor Submit Questionarrow_forwardPart 1. Draw monomer units of the following products and draw their reaction mechanism (with arrow pushing) Polyester fiber Using a) pthalic anhydride + anhydrous sodium acetate + ethylene glycol B)pthalic anhydride + anhydrous sodium acetate + glycerolarrow_forwardIdentify the missing starting materials/ reagents/ products in the following reactions. Show the stereochemistry clearly in the structures, if any. If there is a major product, draw the structures of the major product with stereochemistry clearly indicated where applicable. Show only the diastereomers (you do not have to draw the pairs of enantiomers). If you believe that multiple products are formed in approximately equal amounts (hence neither is the major product), draw the structures of the products, and show the detailed mechanism of these reactions to justify the formation of the multiple products. If you believe no product is formed, explain why briefly. (6 mark for each, except f and g, which are 10 mark each)arrow_forward
- 3. What starting material would you use to synthesize 3-hydroxypentanoic acid using a NaBH4 reduction?arrow_forward1. Give stereochemical (Fischer projection) formulas for all (but no extras) the stereoisomers that could theoretically form during the reduction of a. the carbonyl group of 2-methyl-3--pentanone b. both carbonyl groups of 2,4-pentanedione (careful!) 2. Predict the products of the reduction of O=CCH2CH2CH2C=O with a. LiAlH4 b. NaBH4 CH3 OHarrow_forwardWhich of the following compounds can be synthesized using one reaction from any alkene, as a major product? If it can be synthesized, propose a route, and you may use any other starting materials, reagents and solvents as needed. If you do not think that it can be synthesized as a major product from an alkene, explain in detail why.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





