HEAT+MASS TRANSFER:FUND.+APPL.
6th Edition
ISBN: 9780073398198
Author: CENGEL
Publisher: RENT MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 1, Problem 162P
Using information form the utility bill for the coldest month last year, estimate the average rate of heat loss from your for that month. In your analysis, consider the contribution of the internal heat source such as people, lights, and appliances. Identify the primary sources of heat loss from your house, and propose ways of improving the energy efficiency of your house.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the difference between internal heat generation and heat transfer in any direction. Thank you
(b)
After graduation, you decided to work overseas to experience living in a country with four
seasons. Your neighbour, knowing that you are an engineer asked your help to install a heat
pump system for his house. He wanted to always maintain the temperature in his house at
24°C during winter. In that area during winters, average outside temperature is -3°C. He also
has an underground water well with average water temperature of 10°C during winter.
You estimated that the heat losses from the house under the average outside temperature to
be 75000 kJh. Investigate the most economical mean to power the heat pump (by calculating
the minimum power required) if you can choose to extract heat from either:
i.
The outside air at average temperature of -3°c
ii.
The well water at 10°C
State the reasoning for your calculations.
The Ocean Thermal Energy Conversion (OTEC)
system in Hawali utilizes the surface water and
deep water as thermal energy reservoirs. Assume
the ocean temperature at the surface to be 20 "C
and at some depth to be 6 "C
Determine the maximum possible thermal efficiency achievable by a heat engine.
Express the thermal efficiency as a percentage to three significant figures.
Thà = 478 %
Previous Answers
Correct
Part B
What-if Scenario What would the maximum efficiency be if the surface water temperatun
increased to 25 C
Express the thermal efficiency as a percentage to three significant figures.
Chapter 1 Solutions
HEAT+MASS TRANSFER:FUND.+APPL.
Ch. 1 - How does the science of heat transfer differ from...Ch. 1 - What is the driving force for (a) heat transfer,...Ch. 1 - How do rating problems in heat transfer differ...Ch. 1 - What is the difference between the analytical and...Ch. 1 - What is the importance of modeling in engineering?...Ch. 1 - When modeling an engineering process, how is the...Ch. 1 - On a hot summer day, a student turns his fan on...Ch. 1 - Consider two identical rooms, one with a...Ch. 1 - Prob. 9CPCh. 1 - Prob. 10CP
Ch. 1 - Prob. 11CPCh. 1 - An ideal gas is heated from 50C to 80C (a) at...Ch. 1 - What is heat flux? How is it related to the heat...Ch. 1 - What are the mechanisms of energy transfer to a...Ch. 1 - A logic chip used in a computer dissipates 3 W of...Ch. 1 - Consider a 150-W incandescent lamp. The filament...Ch. 1 - A 15-cm-diameter aluminum ball is to be heated...Ch. 1 - A 60-gallon water heated is initially filled with...Ch. 1 - Prob. 19PCh. 1 - Prob. 20PCh. 1 - Prob. 21PCh. 1 - Prob. 22PCh. 1 - Prob. 23PCh. 1 - Prob. 24PCh. 1 - Prob. 25PCh. 1 - Prob. 26PCh. 1 - A 5-m6-m8-m room is to be heated by an electrical...Ch. 1 - Prob. 28PCh. 1 - Air enters the duct of an air-conditioning system...Ch. 1 - Prob. 30PCh. 1 - Define thermal conductivity, and explain its...Ch. 1 - Which is a better heat conductor, diamond or...Ch. 1 - How do the thermal conductivity of gases and...Ch. 1 - Why is the thermal conductivity of superinsulation...Ch. 1 - Why do we characterize the heat conduction ability...Ch. 1 - What are the mechanisms of heat transfer? How are...Ch. 1 - Write down the expression for the physical laws...Ch. 1 - How does heat conduction differ from convection?Ch. 1 - Does any of the energy of the sun reach the earth...Ch. 1 - How does forced convection differ from natural...Ch. 1 - What is the physical mechanism of heat conduction...Ch. 1 - Consider heat transfer a windowless wall of house...Ch. 1 - Consider heat loss through two walls of house on a...Ch. 1 - Consider two houses that are identical except that...Ch. 1 - Consider two walls of a house that are identical...Ch. 1 - Define emissivity and absorptivity. What is...Ch. 1 - What is a blackbody? How do real bodies differ...Ch. 1 - A wood slab with a thickness 0.05 m is subjected...Ch. 1 - Prob. 49PCh. 1 - Prob. 50EPCh. 1 - The inner and outer surfaces of a 0.5-cm thick...Ch. 1 - Prob. 52PCh. 1 - Prob. 53PCh. 1 - The north wall of an electrically heated home is...Ch. 1 - Prob. 55PCh. 1 - Prob. 56PCh. 1 - Prob. 57PCh. 1 - A concreate wall a surface area of 20 m2 and a...Ch. 1 - Prob. 59PCh. 1 - Prob. 60PCh. 1 - Prob. 61PCh. 1 - Prob. 62EPCh. 1 - Air at 20C with a convection heat transfer...Ch. 1 - Prob. 64PCh. 1 - Prob. 65PCh. 1 - Prob. 66PCh. 1 - Prob. 67PCh. 1 - Prob. 68PCh. 1 - Prob. 69PCh. 1 - Prob. 70PCh. 1 - Prob. 71PCh. 1 - Prob. 72EPCh. 1 - Prob. 73PCh. 1 - Prob. 74PCh. 1 - Prob. 75PCh. 1 - Prob. 76PCh. 1 - Using the conversion factors between W and Btu/h,...Ch. 1 - The outer surface of a spacecraft in space has an...Ch. 1 - Consider a person whose expose surface are is 1.7...Ch. 1 - Prob. 80PCh. 1 - Two surfaces, one highly polished and the other...Ch. 1 - A spherical interplanetary probe with a diameter...Ch. 1 - Prob. 83PCh. 1 - Can all three modes of heat transfer occur...Ch. 1 - Can a medium involve (a) conduction and...Ch. 1 - The deep human body temperature of a healthy...Ch. 1 - We often turn the fan on in summer to help us...Ch. 1 - Prob. 88PCh. 1 - Prob. 89PCh. 1 - Prob. 90PCh. 1 - An electronic package with a surface area of 1 m2...Ch. 1 - Consider steady heat transfer between two large...Ch. 1 - Prob. 93PCh. 1 - Prob. 94PCh. 1 - A 2-in-diameter spherical ball whose surface is...Ch. 1 - Prob. 96PCh. 1 - Prob. 97PCh. 1 - A 3-m-internal-diameter spherical tank made of...Ch. 1 - Prob. 99PCh. 1 - Solar radiation is incident on a 5-m2 solar...Ch. 1 - Prob. 101PCh. 1 - Prob. 102PCh. 1 - Prob. 103EPCh. 1 - An AISI 304 stainless steel sheet is going through...Ch. 1 - Prob. 105PCh. 1 - Prob. 106PCh. 1 - Prob. 107PCh. 1 - Prob. 108CPCh. 1 - Prob. 109PCh. 1 - Prob. 110PCh. 1 - Prob. 111PCh. 1 - Prob. 112PCh. 1 - Prob. 113CPCh. 1 - Why is the metabolic rate of women, in general,...Ch. 1 - What is asymmetric thermal radiation How does it...Ch. 1 - How do (a) draft and (b) cold floor surfaces cause...Ch. 1 - Prob. 117CPCh. 1 - Why is it necessary to ventilate buildings? What...Ch. 1 - Consider a house in Atlanta, Georgia, that is...Ch. 1 - Prob. 120PCh. 1 - A 4m5m6m and room is to be heated by one ton (1000...Ch. 1 - Engine valves (cp=440J/kg.Kandp=7840kg/m3) are to...Ch. 1 - Prob. 123PCh. 1 - Prob. 124PCh. 1 - A 0.3 -cm-thick, 12-cm-high, and 18-cm-long...Ch. 1 - A 40-cm-long, 800-W electric resistance heating...Ch. 1 - It is well known that wind makes the cold air feel...Ch. 1 - An engine block with a surface area measured to be...Ch. 1 - Prob. 129PCh. 1 - Prob. 130PCh. 1 - Prob. 131PCh. 1 - Consider a person standing in a room maintained at...Ch. 1 - Prob. 133PCh. 1 - Prob. 134PCh. 1 - Prob. 135PCh. 1 - Prob. 136PCh. 1 - Prob. 137PCh. 1 - Prob. 138PCh. 1 - Prob. 139PCh. 1 - Prob. 140PCh. 1 - Prob. 141PCh. 1 - Prob. 142PCh. 1 - A 2-kW electric resistance heater submerged in...Ch. 1 - Prob. 144PCh. 1 - A cold bottled drink (m=2.5kg,cp=4200J/kg.K) at...Ch. 1 - Prob. 146PCh. 1 - Air enters a 12-m-long, 7-cm-diameter pipe at 50oC...Ch. 1 - Prob. 148PCh. 1 - Steady heat conduction occurs through a...Ch. 1 - Heat is lost through a brick wall (k=0.72W/m.K),...Ch. 1 - Prob. 151PCh. 1 - A 40-cm-long, 0.4-cm-diameter electric resistance...Ch. 1 - Prob. 153PCh. 1 - Prob. 154PCh. 1 - Over 90 percent of the energy dissipated by an...Ch. 1 - On a still, cleat night, the sky appears to be a...Ch. 1 - Prob. 157PCh. 1 - Prob. 158PCh. 1 - A persons head can be approximated as a...Ch. 1 - A person standing in a room loses heat to the air...Ch. 1 - Write an essay on how microwave ovens work, and...Ch. 1 - Using information form the utility bill for the...Ch. 1 - It is well know that at the same outdoor air...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- You are planning on installing a set of solar panels which will cover 56.96 ft2. You live in East Lansing Michigan. For the entire month of December how many Btu's can you expect to gather if your panel is 85.93 % efficient and tilted at a 42 degree angle? Your Answer:arrow_forwardshow work please. no previos attemptsarrow_forwardA 2-m2 electric heater is used to heat the air above it. The surface of the heater is at 300°C while the surrounding air is at 40°C. The heater draws 240 V and 22 A and the heat transfer coefficient is 10 W/(m2K).a) What is the rate of heat transfer into the surrounding air in Watts? b) What is the energy conversion efficiency as a percentage (a number between 0 and 100)? Report your answer to one decimal place using rounding.arrow_forward
- Answer question 2 based on the results of question 1. You have a natural gas furnace in your home that used 78,500 cubic feet of natural gas for heating last winter. Your neighbor has a furnace that burns heating oil, and used 516 gallons of heating oil last winter. You can convert the natural gas and heating oil consumption data into Btu to determine which home used more energy for heating. Natural gas BTU: 1,028 Btu per cubic foot Oil BTU: 138,590 Btu per gallon Natural Gas BTU= 80698000 Btu Oil BTU = 71512440 Btu The home that used a natural gas furnace used more energy for heating. 2. You need a new furnace for your home, and you are comparing systems that use natural gas and heating oil. One factor to consider is the cost of fuel. You can compare the price of the fuels on an equal basis by dividing the price per unit of the fuels by the Btu content per unit of the fuels to get a price per million Btu. Assume Natural gas price = $10.50 per thousand cubic…arrow_forwardAn engineer was tasked with evaluating a heat and power generation unit for an aluminium smelting plant. The management intends to expand the production facilities to meet growing demand for aluminium. The plan involves increasing the energy intensive smelting line from the present single line to three lines by end of 2022. To support the expansion plan, the company plans to install a self-sufficient power generation unit. Details of the energy requirement and the proposed power generation unit is given the following Table. Item Power requirement per smelting processing line 0.6 MW Proposed power generation unit: Supplier • System Description Mitsubishi Heavy Industries Ltd Steam power plant (Carnot heat engines principles) 35% • Overall thermal efficiency Prepare a mini technical power evaluation report for the above project. Your report should include the following items and in the following order: a. Total power (W) and heat (Q) requirement.arrow_forwardanythingarrow_forward
- explain how heat transfer can be applied in terms of agriculture and machinery?arrow_forwardA 100 MW coal fired power plant has an average heat rate of 9,500 BTU/ kWh. The plant load factor is 75%; the heating value of coal is12,000 BTU/ lb. Calculate the amount of coal usage for one day. Ans.1.425x106lbsarrow_forwardQuestion 1: In your own words, write down the differences between thermodynamic and heat transfer. (3 Marks) Question 2: Estimate the heat loss per square metre of surface through a brick wall 0.5 m thick when the inner surface is at 400 K and the outside surface is at 300 K. The thermal conductivity of the brick may be taken as 0.7 W/mK. (2 Marks) Question 3: A furnace is constructed with 0.20 m of firebrick, 0.10 m of insulating brick, and 0.20 m of building brick. The inside temperature is 1200 K and the outside temperature is 330 K. If the thermal conductivities are as shown in the figure below, estimate the heat loss per unit area. (5 Marks) 1200 K 330 K Fire brick X=0.20 m Insulating brick x=0.10 m Ordinary brick X=0.20 m k = 1.4 k = 0.21 k = 0.7 (WimK)arrow_forward
- 1.2 A concrete wall in a factory located in Canada has a thickness of 0.1 metres. The wall is exposed to a relatively cold breeze at a temperature of – 3.15°C through a convection heat transfer coefficient of 40 W/m2K. On the other side is calm air at 330 K, with a natural- convection heat transfer coefficient of 10 W/m K. You are required to work out the rate of heat transfer per unit area.arrow_forwardBuilding Service Subjectarrow_forwardA group is considering installing a solar power station and has asked you for your recommendation if it should be a photovoltaic system or a solar thermal system. At this stage you are asked not to include cost factors. The single point design condition they have given you is for an incident solar radiation on the collector of 550 W/m2, a surrounding temperature of 18 C. The dead state for this problem should be taken as To = 291 K, Po = 1 bar. You can perform your analysis at steady state conditions. In addition to determining the power output and first law efficiency of the options, you have been requested to determine the exergy destroyed for each of them. The photovoltaic system has an efficiency of 0.15 defined as the power output/incident solar radiation. The basic photovoltaic collector is 1.1 m2 and losses heat from both the front and back surface. The edge area can be neglected. The convective heat transfer coefficient is 10 W/m2 K. The inverter and signal…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage LearningPrinciples of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license