It is well known that wind makes the cold air feel much colder as a result of the wind-chill effect that is due to the increase in the convection heat transfer coefficient with increasing air velocity. The wind-chill effect is usually expressed in terms of the wind-chill temperature (WCT), which is the apparent temperature felt by exposed skin. For an outdoor air temperature of 0 o C, for example, the wind-chill temperature is − 5 o C with 20 km/h winds and − 9 o C with 60 km/h winds. That is, a person exposed to 0 o C windy air at 20 km/h will feel as cold as a person exposed to − 5 o C calm air (air motion under 5 km/h). For heat transfer purposes, a standing man can be modeled as a 30-cm-diameter, 170-cm-long vertical cylinder with both the top and bottom surfaces insulated and with the side surface at an average temperature of 34 o C . and For a convection heat transfer coefficient of 15 W/m 2. K, determine the rate of heat loss from this man by convection in still air at 20 o C . and What would your answer be if the convection heat transfer coefficient is increased to 30 W/m 2. K as a result of winds? What is the wind-chill temperature in this case?
It is well known that wind makes the cold air feel much colder as a result of the wind-chill effect that is due to the increase in the convection heat transfer coefficient with increasing air velocity. The wind-chill effect is usually expressed in terms of the wind-chill temperature (WCT), which is the apparent temperature felt by exposed skin. For an outdoor air temperature of 0 o C, for example, the wind-chill temperature is − 5 o C with 20 km/h winds and − 9 o C with 60 km/h winds. That is, a person exposed to 0 o C windy air at 20 km/h will feel as cold as a person exposed to − 5 o C calm air (air motion under 5 km/h). For heat transfer purposes, a standing man can be modeled as a 30-cm-diameter, 170-cm-long vertical cylinder with both the top and bottom surfaces insulated and with the side surface at an average temperature of 34 o C . and For a convection heat transfer coefficient of 15 W/m 2. K, determine the rate of heat loss from this man by convection in still air at 20 o C . and What would your answer be if the convection heat transfer coefficient is increased to 30 W/m 2. K as a result of winds? What is the wind-chill temperature in this case?
It is well known that wind makes the cold air feel much colder as a result of the wind-chill effect that is due to the increase in the convection heat transfer coefficient with increasing air velocity. The wind-chill effect is usually expressed in terms of the wind-chill temperature (WCT), which is the apparent temperature felt by exposed skin. For an outdoor air temperature of
0
o
C,
for example, the wind-chill temperature is
−
5
o
C
with 20 km/h winds and
−
9
o
C
with 60 km/h winds. That is, a person exposed to
0
o
C
windy air at 20 km/h will feel as cold as a person exposed to
−
5
o
C
calm air (air motion under 5 km/h).
For heat transfer purposes, a standing man can be modeled as a 30-cm-diameter, 170-cm-long vertical cylinder with both the top and bottom surfaces insulated and with the side surface at an average temperature of
34
o
C
.
and For a convection heat transfer coefficient of 15 W/m2. K, determine the rate of heat loss from this man by convection in still air at
20
o
C
.
and What would your answer be if the convection heat transfer coefficient is increased to 30 W/m2. K as a result of winds? What is the wind-chill temperature in this case?
۳/۱
العنوان
O
не
شكا
+91x PU + 96852
A heavy car plunges into a lake during an accident and lands at the bottom of the lake
on its wheels as shown in figure. The door is 1.2 m high and I m wide, and the top edge of
Deine the hadrostatic force on the
Plot the displacement diagram for a cam with roller follower of diameter 10 mm. The required
motion is as follows;
1- Rising 60 mm in 135° with uniform acceleration and retardation motion.
2- Dwell 90°
3- Falling 60 mm for 135° with Uniform acceleration-retardation motion.
Then design the cam profile to give the above displacement diagram if the minimum circle
diameter of the cam is 50 mm.
=
-20125
750 x2.01
Plot the displacement diagram for a cam with roller follower of diameter 10 mm. The required
motion is as follows;
1- Rising 60 mm in 135° with uniform acceleration and retardation motion.
2- Dwell 90°
3- Falling 60 mm for 135° with Uniform acceleration-retardation motion.
Then design the cam profile to give the above displacement diagram if the minimum circle
diameter of the cam is 50 mm.
Q1/ A vertical, circular gate with water on one side as shown. Determine
the total resultant force acting on the gate and the location of the center of
pressure, use water specific weight 9.81 kN/m³
1 m
4 m
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.