STEEL DESIGN W/ ACCESS
STEEL DESIGN W/ ACCESS
6th Edition
ISBN: 9781337761499
Author: Segui
Publisher: CENGAGE L
Question
Book Icon
Chapter 1, Problem 1.5.1P
To determine

(a)

The ultimate tensile stress of metal specimen.

Expert Solution
Check Mark

Answer to Problem 1.5.1P

120ksi.

Explanation of Solution

Given:

The diameter of metal specimen is 0.550inch.

The load at facture is 28,500pounds.

Concept Used:

Write the equation to calculate the ultimate tensile stress.

f=PA ...... (I)

Here, ultimate tensile stress is f, fractured load is P, and the cross-sectional area is A.

Calculation:

Calculate the cross-sectional area of specimen.

A=π4×d2 ...... (II)

Here, diameter of the specimen is d.

Substitute 0.550inch for d in the Equation (II).

A=π4×(0.550inch)2=0.95033inch24=0.2375inch2

Calculate the ultimate tensile stress.

Substitute 28,500pounds for P and 0.2375inch2 for A in the Equation (I).

f=28,500pounds0.2375inch2×(1klb1000pounds)=28.5klb0.2375inch2=120klb/inch2×(1ksi1klb/inch2)=120ksi

Conclusion:

Thus, the ultimate tensile stress on the metal specimen is 120ksi.

To determine

(b)

The elongation of the metal specimen.

Expert Solution
Check Mark

Answer to Problem 1.5.1P

13.3%.

Explanation of Solution

Given:

The original gage length is 2.03inches.

The change in gage length is 2.3inches.

Concept Used:

Write the equation to calculate the elongation.

e=LfL0L0×100 ...... (III)

Here, the elongation is e, the length of the specimen at fracture is Lf, and the original length is L0.

Calculation:

Calculate the elongation of the metal specimen.

Substitute 2.03inches for L0 and 2.3inches for Lf in Equation (III).

e=[(2.3inches)(2.03inches)(2.03inches)]×100=0.1330×100=13.3%

Conclusion:

Thus, the elongation of the metal specimen is 13.3%.

To determine

(c)

The reduction in the cross-sectional area of the metal specimen.

Expert Solution
Check Mark

Answer to Problem 1.5.1P

38.86%.

Explanation of Solution

Given:

The original diameter of metal specimen is 0.550inch.

The diameter after fracture load is 0.430inch.

Concept Used:

Write the equation to calculate reduction in cross-sectional area.

R=A0AfA0×100 ...... (IV)

Here, the reduction in cross-sectional area is R, original cross-sectional area is A0, and the cross-sectional area after fracture load is Af.

Calculation:

Calculate the cross-sectional area after fracture load.

Substitute 0.430inch for d in the Equation (II).

A=π4×(0.430inch)2=0.5808inch24=0.1452inch2

Calculate the reduction in the cross-sectional area.

Substitute 0.1452inch2 for Af and 0.2375inch2 for A0 in Equation (IV).

R=0.2375inch20.1452inch20.2375inch2×100=0.0923inch20.2375inch2×100=0.3886×100=38.86%

Conclusion:

Thus, the reduction in the cross-sectional area is 38.86%.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A study reports data on the effects of the drug tamoxifen on change in the level of cortisol-binding globulin (CBG) of patients during treatment. With age = x and ACBG = y, summary values are n = 26, Σx, = 1612, Σ(x, - x)² = 3756.96, Σy, = 281.9, Σ(y, - y)² = 465.34, and Ex,y,= 16,745. (a) Compute a 90% CI for the true correlation coefficient p. (Round your answers to four decimal places.) (b) Test Hop=-0.5 versus H: p< -0.5 at level 0.05. Calculate the test statistic and determine the P-value. (Round your test statistic to two decimal places and your P-value to four decimal places.) z = P-value = State the conclusion in the problem context. ◇ Reject Ho. There is no evidence that p < -0.5. ○ Fail to reject Ho. There is evidence that p < -0.5. Reject Ho. There is evidence that p < -0.5. Fail to reject Ho. There is no evidence that p < -0.5. (c) In a regression analysis of y on x, what proportion of variation in change of cortisol-binding globulin level could be explained by variation in…
For the frame and loading shown, determine the reactions at A and C. 24 Last 2 student ID+50 lbs 24 A 3 in. B A=Last 2 student ID+10 Inch B=Last 2 student ID+40 Inch A B D
The figures below shows the framing plan and section of a reinforced concrete floor system. Floor beams are shown as dotted lines. The weight of the ceiling and floor finishing is 6 psf, that of the mechanical and electrical systems is 7 psf, and the weight of the partitions is 180 psf. The floor live load is 105 psf. The 7 in. thick slab exterior bay (S-1) is reinforced with #5 rebars @ 10 in. o.c. as the main positive reinforcement at the mid span, and #4 @ 109 in. for the shrinkage and temperature reinforcement. The panel is simply supported on the exterior edge and monolithic with the beam at the interior edge. Check the adequacy of the slab. Use the ACI moment coefficients. fc’ = 6,000 psi and fy = 60,000 psi. The slab is in an interior location. Hint: • Estimate total dead load. Find factored maximum positive bending moment in the end span. • Find design positive moment capacity. • Compare and determine adequacy, including safety and economy. C D
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning
Text book image
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Text book image
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning