Consider an infinitely thin flat plate with a 1 m chord at an angle of attack of

The normal, axial, lift and drag forces, moment about the leading and quarter chord and the centre pressure.
Answer to Problem 1.4P
Normal force
Axial force
Lift force
Drag force
Moment about the leading
Moment about quarter chord
Centre of pressure
Explanation of Solution
Given:
Pressure on upper surface
Pressure on lower surface
Shear stress on upper surface
Shear stress on lower surface
Length of chord
Angle of attack
Calculation:
The normal force per unit span is,
Since the plate is thin
Then, normal force per unit span is,
Now, axial force,
Since the plate is thin
Then, axial force per unit span is,
Lift and drag force:
Lift
Drag
The equation of the moment about leading edge per unit span is,
Here, pu and pl is the pressure upper and below the plate, respectively.
Since the plate is thin,
Since shear stresses are also negligible, therefore,
Then, from above equation the moment about leading edge per unit span is,
Again, the moment about the quarter chord per unit span is,
The equation of location of centre of pressure of the plate is,
Want to see more full solutions like this?
Chapter 1 Solutions
Connect with LearnSmart for Anderson: Fundamentals of Aerodynamics, 6e
Additional Engineering Textbook Solutions
Modern Database Management
Mechanics of Materials (10th Edition)
Database Concepts (8th Edition)
Electric Circuits. (11th Edition)
Vector Mechanics for Engineers: Statics and Dynamics
Fluid Mechanics: Fundamentals and Applications
- A mass of ideal gas in a closed piston-cylinder system expands from 427 °C and 16 bar following the process law, pv1.36 = Constant (p times v to the power of 1.36 equals to a constant). For the gas, initial : final pressure ratio is 4:1 and the initial gas volume is 0.14 m³. The specific heat of the gas at constant pressure, Cp = 0.987 kJ/kg-K and the specific gas constant, R = 0.267 kJ/kg.K. Determine the change in total internal energy in the gas during the expansion. Enter your numerical answer in the answer box below in KILO JOULES (not in Joules) but do not enter the units. (There is no expected number of decimal points or significant figures).arrow_forwardmy ID# 016948724. Please solve this problem step by steparrow_forwardMy ID# 016948724 please find the forces for Fx=0: fy=0: fz=0: please help me to solve this problem step by steparrow_forward
- My ID# 016948724 please solve the proble step by step find the forces fx=o: fy=0; fz=0; and find shear moment and the bending moment diagran please draw the diagram for the shear and bending momentarrow_forwardMy ID#016948724. Please help me to find the moment of inertia lx ly are a please show to solve step by stepsarrow_forwardplease solve this problem step by steparrow_forward
- Please do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage LearningRefrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage LearningInternational Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L


