EBK GET READY FOR ORGANIC CHEMISTRY
EBK GET READY FOR ORGANIC CHEMISTRY
2nd Edition
ISBN: 9780100576377
Author: KARTY
Publisher: YUZU
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 1, Problem 1.46P
Interpretation Introduction

(a)

Interpretation:

Lewis structure for the given molecule is to be completed.

Concept introduction:

Lewis structures involve only valence electrons. When drawing a Lewis structure, the first step is to calculate the total number of valence electrons. For a complete Lewis structure of a molecule, the atoms must complete their normal valency by bond formation and lone pairs of electrons. Maximum number of covalent bonds formed by any neutral atom with maximum number of lone pairs is

Atom Number of bond Number of lone pairs
C 4 0
H 1 0
O 2 2
N 1 1
F 1 3

Expert Solution
Check Mark

Answer to Problem 1.46P

The complete Lewis structure for the given molecule is

EBK GET READY FOR ORGANIC CHEMISTRY, Chapter 1, Problem 1.46P , additional homework tip  1

Explanation of Solution

The given structure is

EBK GET READY FOR ORGANIC CHEMISTRY, Chapter 1, Problem 1.46P , additional homework tip  2

Total valence electron count for the given molecule is 54 valence electrons. In the given structure, there are, in all, 14 single bonds, which means 28 valence electrons are used. Two lone pairs are placed on the oxygen atom attached to the C and H as H-O-C and three lone pairs are placed on the fluorine atom. This means 4 + 6 = 10 more electrons are used. This leaves 16 electrons.

EBK GET READY FOR ORGANIC CHEMISTRY, Chapter 1, Problem 1.46P , additional homework tip  3

The other oxygen atom has formed only one bond with carbon. This is converted to a double bond and two lone pairs are placed on the oxygen atom so that its octet is complete. A double bond is placed between C and N atom to complete the octet of carbon and a lone pair is placed in nitrogen to complete its octet.

A triple bond is placed between the other C and N to complete the octet of carbon and a lone pair is placed in the nitrogen to complete its octet.

EBK GET READY FOR ORGANIC CHEMISTRY, Chapter 1, Problem 1.46P , additional homework tip  4

This structure now accounts for all 54 electrons and the octet of each atom, except hydrogen, is complete. The duet for all hydrogens is complete.

Conclusion

The Lewis structure for the given molecule is completed from total valence electron count.

Interpretation Introduction

(b)

Interpretation:

Lewis structure for the given molecule is to be completed.

Concept introduction:

Lewis structures involve only valence electrons. When drawing a Lewis structure, the first step is to calculate the total number of valence electrons. For a complete Lewis structure of a molecule, every carbon atom must form four covalent bonds whereas the hydrogen atom forms one bond.

Expert Solution
Check Mark

Answer to Problem 1.46P

The complete Lewis structure for the given molecule is

EBK GET READY FOR ORGANIC CHEMISTRY, Chapter 1, Problem 1.46P , additional homework tip  5

Explanation of Solution

The given structure is

EBK GET READY FOR ORGANIC CHEMISTRY, Chapter 1, Problem 1.46P , additional homework tip  6

Total valence electron count for the given molecule must be 38. In the given structure, there are, in all, 14 single bonds which means 28 valence electrons are used. A triple bond is placed between the carbon atoms outside the ring, so that the octet of both carbon atoms is complete. Alternate double bonds are placed in the ring so that each carbon atom in the ring has a complete octet.

EBK GET READY FOR ORGANIC CHEMISTRY, Chapter 1, Problem 1.46P , additional homework tip  7

This structure now accounts for all 38 electrons and the octet of each atom, except hydrogen, is complete. The duet for all hydrogen atoms is complete.

Conclusion

The Lewis structure for the given molecule is completed from total valence electron count.

Interpretation Introduction

(c)

Interpretation:

Lewis structure for the given molecule is to be completed.

Concept introduction:

Lewis structures involve only valence electrons. When drawing a Lewis structure, the first step is to calculate the total number of valence electrons. For a complete Lewis structure of a molecule, the atoms must complete their normal valency by bond formation and lone pairs of electrons. Maximum numbers of covalent bonds formed by any neutral atom with maximum number of lone pair are

Atom Number of bond Number of lone pairs
C 4 0
H 1 0
O 2 2
N 1 1

Expert Solution
Check Mark

Answer to Problem 1.46P

The complete Lewis structure for the given molecule is

EBK GET READY FOR ORGANIC CHEMISTRY, Chapter 1, Problem 1.46P , additional homework tip  8

Explanation of Solution

The given structure is

EBK GET READY FOR ORGANIC CHEMISTRY, Chapter 1, Problem 1.46P , additional homework tip  9

Total valence electron count for the given molecule is 28 valence electrons. In the given structure, there are in all 9 single bonds which means 18 valence electrons are used.

The oxygen atom has formed only one bond with nitrogen. This is converted to a double bond and two lone pairs are placed on the oxygen atom so that its octet is complete. Another lone pair is placed on the nitrogen atom so that its octet is complete.

A double bond is placed between the C atoms attached to one hydrogen each. This completes the octet of both carbon atoms

EBK GET READY FOR ORGANIC CHEMISTRY, Chapter 1, Problem 1.46P , additional homework tip  10

This structure now accounts for all the 28 electrons, and the octet of each atom, except hydrogen, is complete. The duet for all hydrogen atoms is complete.

Conclusion

The Lewis structure for the given molecule is completed from total valence electron count.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Bookmarks Profiles Tab Window Help Chemical Formula - Aktiv Che X + → C 11 a app.aktiv.com Google Chrome isn't your default browser Set as default Question 12 of 16 Q Fri Feb 2 Verify it's you New Chrome availabl- Write the balanced molecular chemical equation for the reaction in aqueous solution for mercury(I) nitrate and chromium(VI) sulfate. If no reaction occurs, simply write only NR. Be sure to include the proper phases for all species within the reaction. 3 Hg(NO3)2(aq) + Cг2(SO4)3(aq) → 3 Hg₂SO (s) + 2 Cr(NO3), (aq) ean Ui mate co ence an climate bility inc ulnerabili women, main critic CLIMATE-INI ernational + 10 O 2 W FEB 1 + 4- 3- 2- 2 2 ( 3 4 NS 28 2 ty 56 + 2+ 3+ 4+ 7 8 9 0 5 (s) (1) Ch O 8 9 (g) (aq) Hg NR CI Cr x H₂O A 80 Q A DII A F2 F3 FA F5 F6 F7 F8 F9 #3 EA $ do 50 % 6 CO & 7 E R T Y U 8 ( 9 0 F10 34 F11 川 F12 Subr + delete 0 { P }
Deducing the reactants of a Diels-Alder reaction n the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one step, by moderately heating the reactants? ? Δ • If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any arrangement you like. • If your answer is no, check the box under the drawing area instead. Explanation Check Click and drag to start drawing a structure. >
Predict the major products of the following organic reaction: + Some important notes: A ? • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. • Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are enantiomers. Explanation Check Click and drag to start drawing a structure.

Chapter 1 Solutions

EBK GET READY FOR ORGANIC CHEMISTRY

Ch. 1 - Prob. 1.11PCh. 1 - Prob. 1.12PCh. 1 - Prob. 1.13PCh. 1 - Prob. 1.14PCh. 1 - Prob. 1.15PCh. 1 - Prob. 1.16PCh. 1 - Prob. 1.17PCh. 1 - Prob. 1.18PCh. 1 - Prob. 1.19PCh. 1 - Prob. 1.20PCh. 1 - Prob. 1.21PCh. 1 - Prob. 1.22PCh. 1 - Prob. 1.23PCh. 1 - Prob. 1.24PCh. 1 - Prob. 1.25PCh. 1 - Prob. 1.26PCh. 1 - Prob. 1.27PCh. 1 - Prob. 1.28PCh. 1 - Prob. 1.29PCh. 1 - Prob. 1.30PCh. 1 - Prob. 1.31PCh. 1 - Prob. 1.32PCh. 1 - Prob. 1.33PCh. 1 - Prob. 1.34PCh. 1 - Prob. 1.35PCh. 1 - Prob. 1.36PCh. 1 - Prob. 1.37PCh. 1 - Prob. 1.38PCh. 1 - Prob. 1.39PCh. 1 - Prob. 1.40PCh. 1 - Prob. 1.41PCh. 1 - Prob. 1.42PCh. 1 - Prob. 1.43PCh. 1 - Prob. 1.44PCh. 1 - Prob. 1.45PCh. 1 - Prob. 1.46PCh. 1 - Prob. 1.47PCh. 1 - Prob. 1.48PCh. 1 - Prob. 1.49PCh. 1 - Prob. 1.50PCh. 1 - Prob. 1.51PCh. 1 - Prob. 1.52PCh. 1 - Prob. 1.53PCh. 1 - Prob. 1.54PCh. 1 - Prob. 1.55PCh. 1 - Prob. 1.56PCh. 1 - Prob. 1.57PCh. 1 - Prob. 1.58PCh. 1 - Prob. 1.59PCh. 1 - Prob. 1.60PCh. 1 - Prob. 1.61PCh. 1 - Prob. 1.62PCh. 1 - Prob. 1.63PCh. 1 - Prob. 1.64PCh. 1 - Prob. 1.65PCh. 1 - Prob. 1.66PCh. 1 - Prob. 1.67PCh. 1 - Prob. 1.68PCh. 1 - Prob. 1.69PCh. 1 - Prob. 1.70PCh. 1 - Prob. 1.71PCh. 1 - Prob. 1.72PCh. 1 - Prob. 1.73PCh. 1 - Prob. 1.74PCh. 1 - Prob. 1.75PCh. 1 - Prob. 1.76PCh. 1 - Prob. 1.77PCh. 1 - Prob. 1.78PCh. 1 - Prob. 1.79PCh. 1 - Prob. 1.80PCh. 1 - Prob. 1.81PCh. 1 - Prob. 1.82PCh. 1 - Prob. 1.1YTCh. 1 - Prob. 1.2YTCh. 1 - Prob. 1.3YTCh. 1 - Prob. 1.4YTCh. 1 - Prob. 1.5YTCh. 1 - Prob. 1.6YTCh. 1 - Prob. 1.7YTCh. 1 - Prob. 1.8YTCh. 1 - Prob. 1.9YTCh. 1 - Prob. 1.10YTCh. 1 - Prob. 1.11YTCh. 1 - Prob. 1.12YTCh. 1 - Prob. 1.13YTCh. 1 - Prob. 1.14YTCh. 1 - Prob. 1.15YTCh. 1 - Prob. 1.16YTCh. 1 - Prob. 1.17YT
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning
Types of bonds; Author: Edspira;https://www.youtube.com/watch?v=Jj0V01Arebk;License: Standard YouTube License, CC-BY