
Place these variables in the following classification tables. For each table, summarize your observations and evaluate if the results are generally true. For example, salary is reported as a continuous quantitative variable. It is also a continuous ratio-scaled variable.
- a. Salary
- b. Gender
- c. Sales volume of MP3 players
- d. Soft drink preference
- e. Temperature
- f. SAT scores
- g. Student rank in class
- h. Rating of a finance professor
- i. Number of home computers

Classify each variable as discrete or continuous, qualitative or quantitative, nominal or ordinal or interval or ratio, and put them into the given tables.
Answer to Problem 13CE
The classifications of the variables in the tables are as follows:
Discrete | Continuous | |
Qualitative |
b. Gender d. Soft drink preference g. Student rank in class h. Rating of a finance professor | |
Quantitative |
c. Sales volume of MP3 players f. SAT scores i. Number of home computers |
a. Salary e. Temperature |
Discrete | Continuous | |
Nominal | b. Gender | |
Ordinal |
d. Soft drink preference g. Student rank in class h. Rating of a finance professor | |
Interval | f. SAT scores | e. Temperature |
Ratio |
c. Sales volume of MP3 players i. Number of home computers | a. Salary |
Explanation of Solution
Classification type Qualitative or quantitative:
Qualitative variable:
A qualitative variable, also called an attribute, is defined as the characteristic of an entity, which naturally takes non-numeric values. The values of a qualitative variable are usually categories. Even if such a variable happens to take numeric values, it would be simply as a label or a tag, on which, no arithmetic operations can be logically performed, other that counting the number of observations in each category and the corresponding percentages.
Quantitative variable:
A quantitative variable is defined as the characteristic of an entity, which naturally takes numeric values. It is logical to perform at least one arithmetic operation, such as addition, subtraction, multiplication, division, etc. on a quantitative variable.
Classification type: Discrete or continuous:
Discrete variable:
A discrete variable is defined as the quantitative variable corresponding to a characteristic of an entity that can take only some distinct numeric values in a given range. Within two consecutive distinct values, there is usually a gap, such that no observation can take a value in that gap. A discrete variable is usually “counted”.
Continuous variable:
A continuous variable is defined as the quantitative variable corresponding to a characteristic of an entity that can take any numeric values within a given range. It is not necessary to have a fixed gap within any two consecutive continuous variable values. A continuous variable is usually “measured”.
Classification type: Levels of measurement:
Nominal level of measurement:
A variable is said to be recorded at the nominal level of measurement, if its values comprise only of names and labels, which do not have any natural order and can only be counted.
Ordinal level of measurement:
A variable is said to be recorded at the ordinal level of measurement, if its values comprise of names and labels, which occur in a natural order and can only be counted.
Interval level of measurement:
A variable is said to be recorded at the interval level of measurement, if its values comprise of numbers or levels, in which, the distance between any two values is meaningfully defined, and the scale of measurement has a known unit.
Ratio level of measurement:
A variable is said to be recorded at the ratio level of measurement, if its values comprise of numbers, among which, the value zero is absolutely defined, and the scale of measurement has a known unit.
a. Salary:
The salary of an individual can take numerical values, on which, it is logical to perform arithmetic operation. Thus, salary is a quantitative variable.
The salary can take any numerical value within a given range. It is not necessary for the salary to be distinct numbers. Thus, salary is a continuous variable.
The salary takes numerical values, with units such as dollars. Moreover, the value 0 of salary is absolute, which implies that an individual receives no salary, and which is logical. Thus, salary is at the ratio level of measurement.
b. Gender:
The gender of an individual cannot take numerical values. On these values, it is not logical to perform arithmetic operation. Thus, gender is a qualitative variable.
The gender can be any one of several distinct categories. It cannot take any value within a given range. Thus, gender is a discrete variable.
The gender takes non-numerical values, with no units. The values of the variable gender are simply labels or tags, which are not numerical. Thus, gender is at the nominal level of measurement.
c. Sales volume of MP3 players:
The sales volume of MP3 players can take numerical values, on which, it is logical to perform arithmetic operation. Thus, sales volume of MP3 players is a quantitative variable.
The sales volume of MP3 players can take only some distinct numerical value within a given range. It can be counted, and cannot take any value within a given range. Thus, sales volume of MP3 players is a continuous variable.
The sales volume of MP3 players takes numerical values. Moreover, the value 0 of sales volume of MP3 players is absolute, which implies that there was no sale of MP3 players at a certain store, and which is logical. Thus, sales volume of MP3 players is at the ratio level of measurement.
d. Soft drink preference:
The soft drink preference of an individual cannot take numerical values. On these values, it is not logical to perform arithmetic operation. Thus, soft drink preference is a qualitative variable.
The soft drink preference can be any one of several distinct categories. It cannot take any value within a given range. Thus, soft drink preference is a discrete variable.
The soft drink preference takes non-numerical values, with no units. The values of the variable are simply labels or tags, which can have a natural order, based on the level of preference. Thus, soft drink preference is at the ordinal level of measurement.
e. Temperature:
The temperature can take numerical values, on which, it is logical to perform arithmetic operation. Thus, temperature is a quantitative variable.
The temperature can take any numerical value within a given range. It is not necessary for the temperature to be distinct numbers. Thus, temperature is a continuous variable.
The temperature takes numerical values, with units such as Celsius, Fahrenheit, Kelvin, etc. However, the value 0 of temperature is not absolute; a temperature of 0 on one scale corresponds to a non-zero temperature on another one. Thus, temperature is at the interval level of measurement.
f. SAT scores:
The SAT scores of an individual can take numerical values, on which, it is logical to perform arithmetic operation. Thus, SAT scores is a quantitative variable.
The SAT scores of students can take only some distinct values, and not just any value within a given range. It cannot take any value within a given range. Thus, SAT scores are a discrete variable.
The SAT scores take numerical. However, Moreover the value 0 of SAT scores is not absolute, and not logical. Moreover, the ratio of two SAT scores is illogical. Thus, SAT scores are at the interval level of measurement.
g. Student rank in class:
The student rank in class of an individual cannot take numerical values. On these values, it is not logical to perform arithmetic operation. Thus, student rank in class is a qualitative variable.
The student rank in class can be any one of several distinct categories. It cannot take any value within a given range. Thus, student rank in class is a discrete variable.
The student rank in class takes non-numerical values, with no units. The values of the variable are simply labels or tags, which can have a natural order, based on the class performance of the student. Thus, student rank in class is at the ordinal level of measurement.
h. Rating of a finance professor:
The rating of a finance professor cannot take numerical values. On these values, it is not logical to perform arithmetic operation. Thus, rating of a finance professor is a qualitative variable.
The rating of a finance professor can be any one of several distinct categories. It cannot take any value within a given range. Thus, rating of a finance professor is a discrete variable.
The rating of a finance professor takes non-numerical values, with no units, unless otherwise mentioned. The values of the variable are simply labels or tags, which can have a natural order, based on the level of liking for the professor. Thus, rating of a finance professor is at the ordinal level of measurement.
i. Number of home computers:
The number of home computers in a home can take numerical values, on which, it is logical to perform arithmetic operation. Thus, number of home computers is a quantitative variable.
The number of home computers can take only some distinct numerical value within a given range. It can be counted, and cannot take any value within a given range. Thus, number of home computers is a continuous variable.
The number of home computers takes numerical values. Moreover, the value 0 of number of home computers is absolute, which implies that a home has no home computers, and which is logical. Thus, number of home computers is at the ratio level of measurement.
Want to see more full solutions like this?
Chapter 1 Solutions
Loose Leaf for Statistical Techniques in Business and Economics (Mcgraw-hill/Irwin Series in Operations and Decision Sciences)
- 1) and let Xt is stochastic process with WSS and Rxlt t+t) 1) E (X5) = \ 1 2 Show that E (X5 = X 3 = 2 (= = =) Since X is WSSEL 2 3) find E(X5+ X3)² 4) sind E(X5+X2) J=1 ***arrow_forwardProve that 1) | RxX (T) | << = (R₁ " + R$) 2) find Laplalse trans. of Normal dis: 3) Prove thy t /Rx (z) | < | Rx (0)\ 4) show that evary algebra is algebra or not.arrow_forwardFor each of the time series, construct a line chart of the data and identify the characteristics of the time series (that is, random, stationary, trend, seasonal, or cyclical). Month Number (Thousands)Dec 1991 65.60Jan 1992 71.60Feb 1992 78.80Mar 1992 111.60Apr 1992 107.60May 1992 115.20Jun 1992 117.80Jul 1992 106.20Aug 1992 109.90Sep 1992 106.00Oct 1992 111.80Nov 1992 84.50Dec 1992 78.60Jan 1993 70.50Feb 1993 74.60Mar 1993 95.50Apr 1993 117.80May 1993 120.90Jun 1993 128.50Jul 1993 115.30Aug 1993 121.80Sep 1993 118.50Oct 1993 123.30Nov 1993 102.30Dec 1993 98.70Jan 1994 76.20Feb 1994 83.50Mar 1994 134.30Apr 1994 137.60May 1994 148.80Jun 1994 136.40Jul 1994 127.80Aug 1994 139.80Sep 1994 130.10Oct 1994 130.60Nov 1994 113.40Dec 1994 98.50Jan 1995 84.50Feb 1995 81.60Mar 1995 103.80Apr 1995 116.90May 1995 130.50Jun 1995 123.40Jul 1995 129.10Aug 1995…arrow_forward
- For each of the time series, construct a line chart of the data and identify the characteristics of the time series (that is, random, stationary, trend, seasonal, or cyclical). Year Month Units1 Nov 42,1611 Dec 44,1862 Jan 42,2272 Feb 45,4222 Mar 54,0752 Apr 50,9262 May 53,5722 Jun 54,9202 Jul 54,4492 Aug 56,0792 Sep 52,1772 Oct 50,0872 Nov 48,5132 Dec 49,2783 Jan 48,1343 Feb 54,8873 Mar 61,0643 Apr 53,3503 May 59,4673 Jun 59,3703 Jul 55,0883 Aug 59,3493 Sep 54,4723 Oct 53,164arrow_forwardHigh Cholesterol: A group of eight individuals with high cholesterol levels were given a new drug that was designed to lower cholesterol levels. Cholesterol levels, in milligrams per deciliter, were measured before and after treatment for each individual, with the following results: Individual Before 1 2 3 4 5 6 7 8 237 282 278 297 243 228 298 269 After 200 208 178 212 174 201 189 185 Part: 0/2 Part 1 of 2 (a) Construct a 99.9% confidence interval for the mean reduction in cholesterol level. Let a represent the cholesterol level before treatment minus the cholesterol level after. Use tables to find the critical value and round the answers to at least one decimal place.arrow_forwardI worked out the answers for most of this, and provided the answers in the tables that follow. But for the total cost table, I need help working out the values for 10%, 11%, and 12%. A pharmaceutical company produces the drug NasaMist from four chemicals. Today, the company must produce 1000 pounds of the drug. The three active ingredients in NasaMist are A, B, and C. By weight, at least 8% of NasaMist must consist of A, at least 4% of B, and at least 2% of C. The cost per pound of each chemical and the amount of each active ingredient in one pound of each chemical are given in the data at the bottom. It is necessary that at least 100 pounds of chemical 2 and at least 450 pounds of chemical 3 be used. a. Determine the cheapest way of producing today’s batch of NasaMist. If needed, round your answers to one decimal digit. Production plan Weight (lbs) Chemical 1 257.1 Chemical 2 100 Chemical 3 450 Chemical 4 192.9 b. Use SolverTable to see how much the percentage of…arrow_forward
- At the beginning of year 1, you have $10,000. Investments A and B are available; their cash flows per dollars invested are shown in the table below. Assume that any money not invested in A or B earns interest at an annual rate of 2%. a. What is the maximized amount of cash on hand at the beginning of year 4.$ ___________ A B Time 0 -$1.00 $0.00 Time 1 $0.20 -$1.00 Time 2 $1.50 $0.00 Time 3 $0.00 $1.90arrow_forwardFor each of the time series, construct a line chart of the data and identify the characteristics of the time series (that is, random, stationary, trend, seasonal, or cyclical). Year Month Rate (%)2009 Mar 8.72009 Apr 9.02009 May 9.42009 Jun 9.52009 Jul 9.52009 Aug 9.62009 Sep 9.82009 Oct 10.02009 Nov 9.92009 Dec 9.92010 Jan 9.82010 Feb 9.82010 Mar 9.92010 Apr 9.92010 May 9.62010 Jun 9.42010 Jul 9.52010 Aug 9.52010 Sep 9.52010 Oct 9.52010 Nov 9.82010 Dec 9.32011 Jan 9.12011 Feb 9.02011 Mar 8.92011 Apr 9.02011 May 9.02011 Jun 9.12011 Jul 9.02011 Aug 9.02011 Sep 9.02011 Oct 8.92011 Nov 8.62011 Dec 8.52012 Jan 8.32012 Feb 8.32012 Mar 8.22012 Apr 8.12012 May 8.22012 Jun 8.22012 Jul 8.22012 Aug 8.12012 Sep 7.82012 Oct…arrow_forwardFor each of the time series, construct a line chart of the data and identify the characteristics of the time series (that is, random, stationary, trend, seasonal, or cyclical). Date IBM9/7/2010 $125.959/8/2010 $126.089/9/2010 $126.369/10/2010 $127.999/13/2010 $129.619/14/2010 $128.859/15/2010 $129.439/16/2010 $129.679/17/2010 $130.199/20/2010 $131.79 a. Construct a line chart of the closing stock prices data. Choose the correct chart below.arrow_forward
- For each of the time series, construct a line chart of the data and identify the characteristics of the time series (that is, random, stationary, trend, seasonal, or cyclical) Date IBM9/7/2010 $125.959/8/2010 $126.089/9/2010 $126.369/10/2010 $127.999/13/2010 $129.619/14/2010 $128.859/15/2010 $129.439/16/2010 $129.679/17/2010 $130.199/20/2010 $131.79arrow_forward1. A consumer group claims that the mean annual consumption of cheddar cheese by a person in the United States is at most 10.3 pounds. A random sample of 100 people in the United States has a mean annual cheddar cheese consumption of 9.9 pounds. Assume the population standard deviation is 2.1 pounds. At a = 0.05, can you reject the claim? (Adapted from U.S. Department of Agriculture) State the hypotheses: Calculate the test statistic: Calculate the P-value: Conclusion (reject or fail to reject Ho): 2. The CEO of a manufacturing facility claims that the mean workday of the company's assembly line employees is less than 8.5 hours. A random sample of 25 of the company's assembly line employees has a mean workday of 8.2 hours. Assume the population standard deviation is 0.5 hour and the population is normally distributed. At a = 0.01, test the CEO's claim. State the hypotheses: Calculate the test statistic: Calculate the P-value: Conclusion (reject or fail to reject Ho): Statisticsarrow_forward21. find the mean. and variance of the following: Ⓒ x(t) = Ut +V, and V indepriv. s.t U.VN NL0, 63). X(t) = t² + Ut +V, U and V incepires have N (0,8) Ut ①xt = e UNN (0162) ~ X+ = UCOSTE, UNNL0, 62) SU, Oct ⑤Xt= 7 where U. Vindp.rus +> ½ have NL, 62). ⑥Xn = ΣY, 41, 42, 43, ... Yn vandom sample K=1 Text with mean zen and variance 6arrow_forward
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning




