(a)
Interpretation:
The pressure halfway to the center of the sun assuming that the interior consists of ionized hydrogen atoms at the temperature of
Concept introduction:
Ideal gas equation:
According to kinetic theory of gas the ideal gas is the one having almost negligible volume, no attractive or repulsive force working between the molecules. The molecules are randomly moving and colliding with each other having elastic collisions.
Ideal gas equation can be represented as,
Where,
(a)

Answer to Problem 1.2PR
Pressure in midway of sun is
Explanation of Solution
Given that the temperature in the sun is
It has been assumed that the interior of the sun is filled with the ionized hydrogen atom.
Ideal gas equation,
It can also be written as,
The number of molecules of gas can be represented as,
Now the mass of the ionized hydrogen atom is,
Hence the ideal gas equation can be written as,
For, ionized hydrogen atom,
Now putting all the values in the ideal gas equation,
Hence pressure in midway of sun is
(b)
Interpretation:
The pressure of the plasma is related to its kinetic energy density by
Concept introduction:
Kinetic energy density:
Kinetic energy of the gas molecules is the energy that occurs due to the random motion of the gas molecules.
It can be expressed as,
Kinetic energy of the molecules in a region divided by the volume of that region is the kinetic energy density of the molecules of that region.
Equipartition of energy:
The equipartition theorem shows that in thermal equilibrium any degree of freedom which appears only quadratically in the energy has an average energy of
(b)

Explanation of Solution
According to the equipartition theorem it can be predicted that the monoatomic ideal gas has an average kinetic energy of
Hence it can be concluded that kinetic energy,
From this it can be concluded that,
Now from part (a) the ideal gas equation,
Now combining the above two equations,
Thus it can be shown that
(c)
Interpretation:
Kinetic energy density half way to the center of the sun has to be calculated.
Concept introduction:
Ideal gas equation:
According to kinetic theory of gas the ideal gas is the one having almost negligible volume, no attractive or repulsive force working between the molecules. The molecules are randomly moving and colliding with each other having elastic collisions.
Ideal gas equation can be represented as,
Where,
Kinetic energy density:
Kinetic energy of the gas molecules is the energy that occurs due to the random motion of the gas molecules.
It can be expressed as,
Kinetic energy of the molecules in a region divided by the volume of that region is the kinetic energy density of the molecules of that region.
(c)

Answer to Problem 1.2PR
The sun has kinetic energy density
Explanation of Solution
Pressure to the half way to the center of the sun is
From part (b) relation between the pressure and kinetic energy density obtained is,
Now, putting the value of pressure in this equation,
At
Hence at
Hence
Hence the sun has much more energy density.
Hence the sun has kinetic energy density
(d)
Interpretation:
The pressure halfway to the center of the red giant assuming that the interior consists of fully ionized carbon atoms at the temperature of
Concept introduction:
Ideal gas equation:
According to kinetic theory of gas the ideal gas is the one having almost negligible volume, no attractive or repulsive force working between the molecules. The molecules are randomly moving and colliding with each other having elastic collisions.
Ideal gas equation can be represented as,
Where,
(d)

Answer to Problem 1.2PR
The pressure in midway of red giant is
Explanation of Solution
Given that the temperature at the halfway of the center of the red giant is
The red giant is filled with fully ionized carbon atom.
Ideal gas equation,
It can also be written as,
The number of molecules of gas can be represented as,
Now the mass of the fully ionized carbon atom is,
Hence the ideal gas equation can be written as,
For, fully ionized carbon atom,
Now putting all the values in the ideal gas equation,
Hence pressure in midway of red giant is
(e)
Interpretation:
The pressure halfway to the center of the red giant assuming that the interior consists of neutral carbon atoms at the temperature of
Concept introduction:
Ideal gas equation:
According to kinetic theory of gas the ideal gas is the one having almost negligible volume, no attractive or repulsive force working between the molecules. The molecules are randomly moving and colliding with each other having elastic collisions.
Ideal gas equation can be represented as,
Where,
(e)

Answer to Problem 1.2PR
The pressure in midway of red giant is
Explanation of Solution
Given that the temperature at the halfway of the center of the red giant is
The red giant is filled with neutral carbon atom.
Ideal gas equation,
It can also be written as,
The number of molecules of gas can be represented as,
Now the mass of the fully ionized carbon atom is,
Hence the ideal gas equation can be written as,
For, neutral carbon atom,
Now putting all the values in the ideal gas equation,
Hence pressure in midway of red giant is
Want to see more full solutions like this?
Chapter 1 Solutions
Us Solutions Manual To Accompany Elements Of Physical Chemistry 7e
- QUESTION 1 Write the IUPAC names for the following compounds. (a) (b) 2 H₂C CH (c) Br (d) HO (e) COOHarrow_forwardneed help finding the product of these reactionsarrow_forwardPart 1. Draw monomer units of the following products and draw their reaction mechanism 1) Bakelite like polymer Using: Resorcinol + NaOH + Formalin 2) Polyester fiber Using a) pthalic anhydride + anhydrous sodium acetate + ethylene glycol B)pthalic anhydride + anhydrous sodium acetate + glycerol 3) Temporary cross-linked polymer Using: 4% polyvinyl alcohol+ methyl red + 4% sodium boratearrow_forward
- Using the table of Reactants and Products provided provide the correct letter that corresponds with the Carboxylic acid that is formed in the reaction below. 6 M NaOH Acid-workup WRITE THE CORRECT LETTER ONLY DO NOT WRITE EXTRA WORDS OR PHRASES A) Pool of Reagents for Part B CI B) OH C) E) CI J) racemic F) K) OH N) OH P) G) OH D) HO H) L) M) HO Q) R) CI Aarrow_forwardIn the table below, the exact chemical structures for Methyl salicylate can be represented by the letter WRITE THE CORRECT LETTER ONLY DO NOT WRITE EXTRA WORDS OR PHRASES CI B) A) E) Cl racemic F) J) CI K) N) OH P) Pool of Reagents for Part B OH OH G) L) OH D) HO H) M) HO Q) R) CIarrow_forwardDraw the stepwise mechanism for the reactionsarrow_forward
- Part I. a) Draw reaction mechanism for the transformations of benzophenone to benzopinacol to benzopinaco lone b) Pinacol (2,3-dimethyl, 1-3-butanediol) on treatment w/ acid gives a mixture of pina colone (3,3-dimethyl-2-butanone) and 2, 3-dimethyl - 1,3-butadiene. Give reasonable mechanism the formation of the products Forarrow_forward3. The explosive decomposition of 2 mole of TNT (2,4,6-trinitrotoluene) is shown below: Assume the C(s) is soot-basically atomic carbon (although it isn't actually atomic carbon in real life). 2 CH3 H NO2 NO2 3N2 (g)+7CO (g) + 5H₂O (g) + 7C (s) H a. Use bond dissociation energies to calculate how much AU is for this reaction in kJ/mol.arrow_forwardPart I. Draw reaction mechanism for the transformations of benzophenone to benzopinacol to benzopinaco lone and answer the ff: Pinacol (2,3-dimethyl, 1-3-butanediol) on treatment w/ acid gives a mixture of pina colone and (3,3-dimethyl-2-butanone) 2,3-dimethyl-1,3-butadiene. Give reasonable mechanism the formation of the products Forarrow_forward
- Show the mechanism for these reactionsarrow_forwardDraw the stepwise mechanismarrow_forwardDraw a structural formula of the principal product formed when benzonitrile is treated with each reagent. (a) H₂O (one equivalent), H₂SO₄, heat (b) H₂O (excess), H₂SO₄, heat (c) NaOH, H₂O, heat (d) LiAlH4, then H₂Oarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





