(a)
Interpretation:
The mean speed from Maxwell Boltzmann distribution for a gas of mass
Concept Introduction:
Maxwell-Boltzmann distribution:
Maxwell-Boltzmann distribution is the particular probability distribution. It was first defined and used for describing the particle speeds in idealized gases where the particle movement is free without interaction with one another except very brief collision in which they exchange energy and momentum with each other.
Maxwell-Boltzmann distribution is the result of kinetic theory of gases. Mathematically, this is the chi distribution with the three degrees of freedom i.e. the component of velocity vector in three dimensions with a scale parameter measuring speeds in units proportional to the square root of the ratio of the temperature and particle mass.
According to Maxwell-Boltzmann’s distribution the probability distribution in all three dimensions are given as,
Mean velocity:
Mean velocity or average velocity is the arithmetic mean of the velocities possessed by the gas molecules at a given temperature.
Say no. of molecules in gas is
Hence the mean velocity is
(a)
Explanation of Solution
Mean speed of molecules with a Maxwell-Boltzmann distribution is
It has to be determined with the help of calculus that the mean speed is
Now applying calculus,
From the value of the Maxwell-Boltzmann distribution in three dimension it can be concluded that,
Now applying calculus,
According to the question the integral form that has to be used is,
Now comparing the above two forms it can be concluded that,
Hence by putting the values in the form it is found that,
Hence the mean speed obtained from Maxwell-Boltzmann distribution is
(b)
Interpretation:
The root mean square velocity from Maxwell Boltzmann distribution for a gas of mass
Concept Introduction:
Maxwell-Boltzmann distribution:
Maxwell-Boltzmann distribution is the particular probability distribution. It was first defined and used for describing the particle speeds in idealized gases where the particle movement is free without interaction with one another except very brief collision in which they exchange energy and momentum with each other.
Maxwell-Boltzmann distribution is the result of kinetic theory of gases. Mathematically, this is the chi distribution with the three degrees of freedom i.e. the component of velocity vector in three dimensions with a scale parameter measuring speeds in units proportional to the square root of the ratio of the temperature and particle mass.
According to Maxwell-Boltzmann’s distribution the probability distribution in all three dimensions are given as,
Root mean square velocity:
Root mean square velocity can be defined as the square root of the mean of the squares of the different velocities possessed by the molecules of the gas at a given temperature.
Say no. of molecules in gas is
Hence the mean velocity is
Hence the root mean square velocity is given by,
(b)
Explanation of Solution
The mean speed of molecules with a Maxwell-Boltzmann distribution is
It has to be determined with the help of calculus that the root mean square velocity.is
Now applying calculus,
From the value of the Maxwell-Boltzmann distribution in three dimensions it can be concluded that,
Now applying calculus,
According to the question the integral form that has to be used is,
Now comparing the above two forms it can be concluded that,
Hence by putting the values in the form it is found that,
Now from this the root mean square velocity can be calculated as,
As
Hence the root mean square velocity calculated from Maxwell-Boltzmann distribution is
(c)
Interpretation:
An expression for the most probable speed has to be derived from Maxwell-Boltzmann distribution with the help of differentiation.
Concept Introduction:
Maxwell-Boltzmann distribution:
Maxwell-Boltzmann distribution is the particular probability distribution. It was first defined and used for describing the particle speeds in idealized gases where the particle movement is free without interaction with one another except very brief collision in which they exchange energy and momentum with each other.
Maxwell-Boltzmann distribution is the result of kinetic theory of gases. Mathematically, this is the chi distribution with the three degrees of freedom i.e. the component of velocity vector in three dimensions with a scale parameter measuring speeds in units proportional to the square root of the ratio of the temperature and particle mass.
According to Maxwell-Boltzmann’s distribution the probability distribution in all three dimensions are given as,
Most probable velocity:
Most probable velocity can be defined as the velocity possessed by maximum number of molecules of gas at a given temperature.
(c)
Explanation of Solution
The maximum of Maxwell-Boltzmann distribution occurs when,
Now according to the definition of most probable velocity, it is the velocity which is obtained by maximum no. of gas molecules.
Hence most probable velocity can be calculated as,
From the value of the Maxwell-Boltzmann distribution in three dimension it can be concluded that,
Thus from the above equations,
Applying rules of differentiation,
As
Hence,
Hence the most probable velocity of gas from the Maxwell-Boltzmann distribution is
(d)
Interpretation:
The fraction of
Concept Introduction:
Maxwell-Boltzmann distribution:
Maxwell-Boltzmann distribution is the particular probability distribution. It was first defined and used for describing the particle speeds in idealized gases where the particle movement is free without interaction with one another except very brief collision in which they exchange energy and momentum with each other.
Maxwell-Boltzmann distribution is the result of kinetic theory of gases. Mathematically, this is the chi distribution with the three degrees of freedom i.e. the component of velocity vector in three dimensions with a scale parameter measuring speeds in units proportional to the square root of the ratio of the temperature and particle mass.
According to Maxwell-Boltzmann’s distribution the probability distribution in all three dimensions are given as,
This probability density is actually the measure of the fraction of molecules present in a given velocity range at a given temperature.
Where
(d)
Answer to Problem 1.1PR
The fraction of
Explanation of Solution
The fraction of
From the value of the Maxwell-Boltzmann distribution in three dimensions it can be concluded that,
Hence,
Now putting the values of velocities and temperature in the above equation,
Hence the fraction of
Want to see more full solutions like this?
Chapter 1 Solutions
Us Solutions Manual To Accompany Elements Of Physical Chemistry 7e
- H2SO4 (cat.), H₂O 100 °C NH₂arrow_forwardX Draw the major products of the elimination reaction below. If elimination would not occur at a significant rate, check the box under the drawing area instead. ది www. Cl + OH Elimination will not occur at a significant rate. Click and drag to start drawing a structure.arrow_forwardNonearrow_forward
- 1A H 2A Li Be Use the References to access important values if needed for this question. 8A 3A 4A 5A 6A 7A He B C N O F Ne Na Mg 3B 4B 5B 6B 7B 8B-1B 2B Al Si P 1B 2B Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe * Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Rf Ha ****** Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Analyze the following reaction by looking at the electron configurations given below each box. Put a number and a symbol in each box to show the number and kind of the corresponding atom or ion. Use the smallest integers possible. cation anion + + Shell 1: 2 Shell 2: 8 Shell 3: 1 Shell 1 : 2 Shell 2 : 6 Shell 1 : 2 Shell 2: 8 Shell 1: 2 Shell 2: 8arrow_forwardNonearrow_forwardIV. Show the detailed synthesis strategy for the following compounds. a. CH3CH2CH2CH2Br CH3CH2CCH2CH2CH3arrow_forward
- Do the electrons on the OH participate in resonance with the ring through a p orbital? How many pi electrons are in the ring, 4 (from the two double bonds) or 6 (including the electrons on the O)?arrow_forwardPredict and draw the product of the following organic reaction:arrow_forwardNonearrow_forward
- Redraw the molecule below as a skeletal ("line") structure. Be sure to use wedge and dash bonds if necessary to accurately represent the direction of the bonds to ring substituents. Cl. Br Click and drag to start drawing a structure. : ☐ ☑ Parrow_forwardK m Choose the best reagents to complete the following reaction. L ZI 0 Problem 4 of 11 A 1. NaOH 2. CH3CH2CH2NH2 1. HCI B OH 2. CH3CH2CH2NH2 DII F1 F2 F3 F4 F5 A F6 C CH3CH2CH2NH2 1. SOCl2 D 2. CH3CH2CH2NH2 1. CH3CH2CH2NH2 E 2. SOCl2 Done PrtScn Home End FA FQ 510 * PgUp M Submit PgDn F11arrow_forwardNonearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY