Concept explainers
In our example of the free-falling parachutist, weassumed that the acceleration due to gravity was a constant value. Although this is a decent approximation when we are examining falling objects near the surface of the earth, the gravitational force decreases as we move above sea level. A more general representation based on Newton's inverse square law of gravitational attraction can be written as
where
(a) In a fashion similar to the derivation of Eq. (1.9) use a force balance to derive a differential equation for velocity as a function of time that utilizes this more complete representation of gravitation. However, for this derivation, assume that upward velocity is positive.
(b) For the case where drag is negligible, use the chain rule to express the differential equation as a function of altitude rather than time. Recall that the chain rule is
(c) Use calculus to obtain the closed form solution where
(d) Use Euler's method to obtain a numerical solution from
(a)

The differential equation for velocity v if the gravitational force is not constant and is given by the function
Answer to Problem 12P
Solution:
The differential equation for velocity v is
Explanation of Solution
Given Information:
The function
Where,
Assume the upward velocity is positive. Therefore, the force balance is given as,
Here,
And,
And,
Thus, the force balance is,
Divide the both sides of the above equation by m,
Hence, the differential equation for the velocity is,
(b)

The differential equation of for velocity as a function of altitude if the differential equation for velocity as a function of time is,
Answer to Problem 12P
Solution:
The differential equation of
Explanation of Solution
Given Information:
The differential equation
The drag force is negligible.
And, the chain rule is given as,
Consider the chain rule,
Here,
Now, consider the equation,
Since, drag force is negligible. Therefore,
Thus, from the chain rule,
Hence, differential equation of velocity as a function of altitude x is
(c)

To calculate: The solution for the velocity by the use of calculus if the differential equation of velocity as a function of altitude x is
Answer to Problem 12P
Solution:
The solution for the velocity is,
Explanation of Solution
Given Information:
The differential equation
The initial condition, at
Formula used:
Integration formula,
Calculation:
Consider the differential equation,
Separate the variable as below,
Integrate both the sides of the above equation,
Now, for
Substitute the value of C in the equation
Hence, the solution for the velocity is
(d)

To calculate: The velocity from
Answer to Problem 12P
Solution:
The velocity from
x | v- Euler | v- analytical |
0 | 1500 | 1500 |
10000 | 1434.518 | 1433.216 |
20000 | 1366.261 | 1363.388 |
30000 | 1294.818 | 1290.023 |
40000 | 1219.669 | 1212.476 |
50000 | 1140.138 | 1129.885 |
60000 | 1055.324 | 1041.05 |
70000 | 963.9789 | 944.2077 |
80000 | 864.2883 | 836.5811 |
90000 | 753.4434 | 713.3028 |
100000 | 626.6846 | 564.2026 |
The velocity by the Euler’s method is approximately same as the analytical solution.
Explanation of Solution
Given Information:
The differential equation
Where,
The initial condition
Formula used:
Euler’s method for
Where, h is the step size.
Calculation:
Consider the differential equation,
Substitute
The iteration formula for Euler’s method with step size
From part (c), the analytical solution for the velocity is,
Substitute
Use excel to find all the iteration with step size
Step 1: Name the column A as x and go to column A2 and put 0 then go to column A3and write the formula as,
=A2+10000
Then, Press enter and drag the column up to the
Step 2: Now name the column B as v-Euler and go to column B2 and write 1500 and then go to the column B3 and write the formula as,
=B2+10000*(-398.56*10^12/((6.37*10^6+A2)^2*B2))
Step 3: Press enter and drag the column up to the
Step 4. Now name the column C as v-analytical and go to column C2 and write 1500 and then go to the column C3 and write the formula as,
=(-2*9.81*((6.37*10^6*A3)/(6.37*10^6+A3))+1500^2)^(1/2)
Step 5. Press enter and drag the column up to the
Thus, all the iterations are as shown below,
x | v- Euler | v- analytical |
0 | 1500 | 1500 |
10000 | 1434.518 | 1433.216 |
20000 | 1366.261 | 1363.388 |
30000 | 1294.818 | 1290.023 |
40000 | 1219.669 | 1212.476 |
50000 | 1140.138 | 1129.885 |
60000 | 1055.324 | 1041.05 |
70000 | 963.9789 | 944.2077 |
80000 | 864.2883 | 836.5811 |
90000 | 753.4434 | 713.3028 |
100000 | 626.6846 | 564.2026 |
To draw the graph of the above results, follow the steps as given below,
Step 6:Select the column A and column B. Then, go to the Insert and select the scatter (X, Y) from the chart.
Step 7: Select the column A and column C. Then, go to the Insert and select the scatter (X, Y) from the chart.
Step 8: Select one of the graphs and paste it on another graph to Merge the graphs.
The graph obtained is,
From the graph, it is observed that both the graphs of velocity by analytical method and by Euler’s method is approximately same.
Want to see more full solutions like this?
Chapter 1 Solutions
EBK NUMERICAL METHODS FOR ENGINEERS
Additional Engineering Textbook Solutions
Precalculus: Mathematics for Calculus (Standalone Book)
College Algebra (Collegiate Math)
Elementary Statistics Using The Ti-83/84 Plus Calculator, Books A La Carte Edition (5th Edition)
Elementary Statistics: Picturing the World (7th Edition)
A First Course in Probability (10th Edition)
- (read image) (answer given)arrow_forward11-5. Compute all the dimensional changes for the steel bar when subjected to the loads shown. The proportional limit of the steel is 230 MPa. 265 kN 100 mm 600 kN 25 mm thickness X Z 600 kN 450 mm E=207×103 MPa; μ= 0.25 265 kNarrow_forwardT₁ F Rd = 0.2 m md = 2 kg T₂ Tz1 Rc = 0.4 m mc = 5 kg m = 3 kgarrow_forward
- 2. Find a basis of solutions by the Frobenius method. Try to identify the series as expansions of known functions. (x + 2)²y" + (x + 2)y' - y = 0 ; Hint: Let: z = x+2arrow_forward1. Find a power series solution in powers of x. y" - y' + x²y = 0arrow_forward3. Find a basis of solutions by the Frobenius method. Try to identify the series as expansions of known functions. 8x2y" +10xy' + (x 1)y = 0 -arrow_forward
- Hello I was going over the solution for this probem and I'm a bit confused on the last part. Can you please explain to me 1^4 was used for the Co of the tubular cross section? Thank you!arrow_forwardBlood (HD = 0.45 in large diameter tubes) is forced through hollow fiber tubes that are 20 µm in diameter.Equating the volumetric flowrate expressions from (1) assuming marginal zone theory and (2) using an apparentviscosity for the blood, estimate the marginal zone thickness at this diameter. The viscosity of plasma is 1.2 cParrow_forwardQ2: Find the shear load on bolt A for the connection shown in Figure 2. Dimensions are in mm Fig. 2 24 0-0 0-0 A 180kN (10 Markarrow_forward
- determine the direction and magnitude of angular velocity ω3 of link CD in the four-bar linkage using the relative velocity graphical methodarrow_forwardFour-bar linkage mechanism, AB=40mm, BC=60mm, CD=70mm, AD=80mm, =60°, w1=10rad/s. Determine the direction and magnitude of w3 using relative motion graphical method. A B 2 3 77777 477777arrow_forwardFour-bar linkage mechanism, AB=40mm, BC=60mm, CD=70mm, AD=80mm, =60°, w1=10rad/s. Determine the direction and magnitude of w3 using relative motion graphical method. A B 2 3 77777 477777arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





