Fundamentals Of Engineering Thermodynamics
9th Edition
ISBN: 9781119391388
Author: MORAN, Michael J., SHAPIRO, Howard N., Boettner, Daisie D., Bailey, Margaret B.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 1, Problem 1.29P
To determine
Pressure difference of venturi meter points.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A manometer connects an oil pipeline and a water pipeline as shown in Fig.1.
Determine the difference in pressure between the two pipelines using the readings
on the manometer. Use SGoi=0.86, SGHg=13.6.
Air
Water
8 cm
6 cm
4 cm
Oil
Mercury
Fig.1
An open tube mercury manometer is used to measure the pressure in an
oxygen tank. When the atmospheric pressure is 1040 mbar, what is the
absolute pressure (in Pascal) in the tank if the height of the mercury in the
open tube is 28 cm higher? (density of mercury = 13.6 X 10° kg/m³) *
O 1.41 X10 pa
O 2.34 X105 pa
O 1.82 X105 pa
O 2.12 X105 pa
Subject Thermodynamics. Instructions: Don't round off in the process. Just round off in the final answer with 2 decimals only. Use 273.15 K to convert Celsius to Kelvin.
Chapter 1 Solutions
Fundamentals Of Engineering Thermodynamics
Ch. 1 - Prob. 1.2ECh. 1 - Prob. 1.3ECh. 1 - Prob. 1.4ECh. 1 - Prob. 1.5ECh. 1 - Prob. 1.6ECh. 1 - Prob. 1.7ECh. 1 - Prob. 1.8ECh. 1 - Prob. 1.9ECh. 1 - Prob. 1.10ECh. 1 - Prob. 1.11E
Ch. 1 - Prob. 1.12ECh. 1 - Prob. 1.13ECh. 1 - Prob. 1.14ECh. 1 - Prob. 1.1CUCh. 1 - Prob. 1.2CUCh. 1 - Prob. 1.3CUCh. 1 - Prob. 1.4CUCh. 1 - Prob. 1.5CUCh. 1 - Prob. 1.6CUCh. 1 - Prob. 1.7CUCh. 1 - Prob. 1.8CUCh. 1 - Prob. 1.9CUCh. 1 - Prob. 1.10CUCh. 1 - Prob. 1.11CUCh. 1 - Prob. 1.12CUCh. 1 - Prob. 1.13CUCh. 1 - Prob. 1.14CUCh. 1 - Prob. 1.15CUCh. 1 - Prob. 1.16CUCh. 1 - Prob. 1.17CUCh. 1 - Prob. 1.18CUCh. 1 - Prob. 1.19CUCh. 1 - Prob. 1.20CUCh. 1 - Prob. 1.21CUCh. 1 - Prob. 1.22CUCh. 1 - Prob. 1.23CUCh. 1 - Prob. 1.24CUCh. 1 - Prob. 1.25CUCh. 1 - Prob. 1.26CUCh. 1 - Prob. 1.27CUCh. 1 - Prob. 1.28CUCh. 1 - Prob. 1.29CUCh. 1 - Prob. 1.30CUCh. 1 - Prob. 1.31CUCh. 1 - Prob. 1.32CUCh. 1 - Prob. 1.33CUCh. 1 - Prob. 1.34CUCh. 1 - Prob. 1.35CUCh. 1 - Prob. 1.36CUCh. 1 - Prob. 1.37CUCh. 1 - Prob. 1.38CUCh. 1 - Prob. 1.39CUCh. 1 - Prob. 1.40CUCh. 1 - Prob. 1.41CUCh. 1 - Prob. 1.42CUCh. 1 - Prob. 1.43CUCh. 1 - Prob. 1.44CUCh. 1 - Prob. 1.45CUCh. 1 - Prob. 1.46CUCh. 1 - Prob. 1.47CUCh. 1 - Prob. 1.48CUCh. 1 - Prob. 1.49CUCh. 1 - Prob. 1.50CUCh. 1 - Prob. 1.51CUCh. 1 - Prob. 1.52CUCh. 1 - Prob. 1.53CUCh. 1 - Prob. 1.54CUCh. 1 - Prob. 1.55CUCh. 1 - Prob. 1.56CUCh. 1 - Prob. 1.57CUCh. 1 - Prob. 1.58CUCh. 1 - Prob. 1.4PCh. 1 - Prob. 1.5PCh. 1 - Prob. 1.6PCh. 1 - Prob. 1.7PCh. 1 - Prob. 1.8PCh. 1 - Prob. 1.9PCh. 1 - Prob. 1.10PCh. 1 - Prob. 1.11PCh. 1 - Prob. 1.12PCh. 1 - Prob. 1.13PCh. 1 - Prob. 1.14PCh. 1 - Prob. 1.16PCh. 1 - Prob. 1.17PCh. 1 - Prob. 1.18PCh. 1 - Prob. 1.19PCh. 1 - Prob. 1.20PCh. 1 - Prob. 1.21PCh. 1 - Prob. 1.22PCh. 1 - Prob. 1.23PCh. 1 - Prob. 1.24PCh. 1 - Prob. 1.25PCh. 1 - Prob. 1.26PCh. 1 - Prob. 1.27PCh. 1 - Prob. 1.28PCh. 1 - Prob. 1.29PCh. 1 - Prob. 1.30PCh. 1 - Prob. 1.31PCh. 1 - Prob. 1.32PCh. 1 - Prob. 1.33PCh. 1 - Prob. 1.34PCh. 1 - Prob. 1.35PCh. 1 - Prob. 1.36PCh. 1 - Prob. 1.37PCh. 1 - Prob. 1.38PCh. 1 - Prob. 1.39PCh. 1 - Prob. 1.40PCh. 1 - Prob. 1.41PCh. 1 - Prob. 1.42PCh. 1 - Prob. 1.43PCh. 1 - Prob. 1.44PCh. 1 - Prob. 1.45PCh. 1 - Prob. 1.46PCh. 1 - Prob. 1.47PCh. 1 - Prob. 1.48PCh. 1 - Prob. 1.49P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- FLUID MECHANICS ANSWER 1.42arrow_forward3. The reading of an automobile gage is proportional to the gage pressure at the bottom of the tank as shown. The tank is 32 cm deep. Unit weight of gasoline is 6670 N/m³ and that of air is 11.8 N/m³. Unit weight of water is 9790 N/m³. Vent Air Gasoline Water a. Determine the gage reading when the tank is full of gasoline. b. How many cm of air remains at the top when the gage indicates full and the tank is contaminated with 3 cm of water? c. Determine the pressure at the interface of the gasoline and water when the gage indicates full.arrow_forwardT F The specific weight of a fluid is the product of the fluid's density and the acceleration due to gravity. Stronger surface tension leads to higher capillary rise. Absolute pressures are frequently negative. If the pressure of fluid drops below the vapor pressure of that fluid at that temperature, the fluid will cavitate. F F T F F Density can be measured in lb;/ft° in the English system of units. For a hydrostatic incompressible fluid, pressure is independent of depth. A fluid with a high bulk modulus of elasticity is more difficult to compress than one with a low bulk modulus of elasticity. Viscosity is caused, in part, by the surface tension within a fluid. A fluid can resist an applied shear stress by deforming. Pressure increases faster with depth in less dense fluids than in more dense fluids. T F F F F Farrow_forward
- Aside from the movable wire setup, another method to determine the surface tension of a fluid is by actual measurement of capillary rise or fall. Suppose a 2.3 mm diameter tube is inserted to a liquid whose density is 771 kg/m³, it is observed that the liquid rises 10 mm in the tube, making a contact angle of 30°. Determine the surface tension in N/m. Write your answer to four decimal places.arrow_forwardThe Louisiana Superdome has an interior volume of 125 million ft3, covered by a 440,000 ft² roof. On a particular day, the interior air pressure gave a manometer reading of 19 inches mercury (pHg = 13.6 g/cm³). Local atmospheric pressure is 102 kPa. 1. kg Calculate the mass of the air inside, assuming an average temperature of 20 °C. 2. kN Calculate the net force applied to the roof by the interior/exterior air (do not account for the weight of the roof). Assume the roof is flat.arrow_forwardIn measuring the flow of fluids in a pipeline, a differential manometer, as shown in Fig. E1.26, can be used to determine the pressure difference across an orifice plate. The flow rate can be calibratedi with the observed pressure drop. Calculate the pressure drop p- Pa in pascal. Fluid Oritice Woter, p-10 kg/m -32 mm 10mm - Manometer fluid, R-10 x 10 hg /m Figure El.26arrow_forward
- 1.65 A layer of water flows down an inclined fixed surface with the velocity profile shown in Fig. P1.65. Determine the magnitude and direction of the shearing stress that the water exerts on the fixed surface for U = 2 m/s and h = 0.1 m. * = 2* - IFIGURE P1.65arrow_forwardWhat is the specific weight of octane gas at 1.5 kgf/cm^2 gauge and 60 °F?arrow_forwardTank B Pam= 101 kPa iv) Figure shows a tank within a tank, each containing air. The absolute pressure in tank A is 267.7 kPa. Pressure gage A is located inside of tank B and reads 140 kPa. The U-tube manometer connected to tank B contains mercury. Determine the absolute pressure in tank B, in kPa and column length, in cm. The atmospheric pressure surrounding tank B is 101 kPa. The acceleration due to gravity is 9.81 m/s?. Tank A. PA - 267.7 kPa Gage A Poen. A140 kPa Mercury (p 13.59 g/em) g=98i misarrow_forward
- to gage pressure if it is not specified. Problem 1: A tank shown in Fig. 1 is filled with two different fluids. The pressure at the top of the tank is 1000 kPa. Calculate the pressure at the bottom of the tank. Table 1 Density and depth of each fluid column P1 P2 1500 kg/m³ 200 kg/m³ hı 2500 m h₂ 500 m Pi P2 1000 KPa h₁ h2 Fig. 1 Vertical tankarrow_forwardI need the answer as soon as possiblearrow_forwardA gasoline line is connected to a pressure gage through a double-U manometer, as shown in Figure 2 below. If the reading of the pressure gage is 370 kPa, determine the gage pressure of the gasoline line. Oil SG = 0.79 Pa gage = 370 kPa Gasoline SG = 0.70 45 cm 50 cm Pipe Air 22 cm 10 cm `Water Mercury SG = 13.6 Figure 2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Properties of Fluids: The Basics; Author: Swanson Flo;https://www.youtube.com/watch?v=TgD3nEO1iCA;License: Standard YouTube License, CC-BY
Fluid Mechanics-Lecture-1_Introduction & Basic Concepts; Author: OOkul - UPSC & SSC Exams;https://www.youtube.com/watch?v=6bZodDnmE0o;License: Standard Youtube License