Concept explainers
(a)
Interpretation:
The bond angle in the given molecule is to be stated. The answer is to be explained.
Concept introduction:
There are various theories which explain the geometry of the molecules. The geometry is decided on the basis of specific position of atom in the molecule. The bond lengths and bond angles between the bonded atoms play a major role in this. The bond angle is specific for a specific geometry of the molecule.
Answer to Problem 1.28AP
The bond angle in the given molecule is
Explanation of Solution
The given molecule is
Figure 1
The bond angle for V-shaped geometry is
The bond angle in the given molecule is
(b)
Interpretation:
The bond angle in the given molecule is to be stated. The answer is to be explained.
Concept introduction:
There are various theories which explain the geometry of the molecules. The geometry is decided on the basis of specific position of atom in the molecule. The bond lengths and bond angles between the bonded atoms play a major role in this. The bond angle is specific for a specific geometry of the molecule.
Answer to Problem 1.28AP
The bond angle in the given molecule is
Explanation of Solution
The given molecule is
Figure 2
The bond angle for linear geometry is
The bond angle in the given molecule is
(c)
Interpretation:
The bond angle in the given molecule is to be stated. The answer is to be explained.
Concept introduction:
There are various theories which explain the geometry of the molecules. The geometry is decided on the basis of specific position of atom in the molecule. The bond lengths and bond angles between the bonded atoms play a major role in this. The bond angle is specific for a specific geometry of the molecule.
Answer to Problem 1.28AP
The bond angle in the given molecule is
Explanation of Solution
The given molecule is
Figure 3
The bond angle for planar geometry is
The bond angle in the given molecule is
(d)
Interpretation:
The bond angle in the given molecule is to be stated. The answer is to be explained.
Concept introduction:
There are various theories which explain the geometry of the molecules. The geometry is decided on the basis of specific position of atom in the molecule. The bond lengths and bond angles between the bonded atoms play a major role in this. The bond angle is specific for a specific geometry of the molecule.
Answer to Problem 1.28AP
The bond angle in the given molecule is
Explanation of Solution
The given molecule is
Figure 4
The bond angle for tetrahedral geometry is
The bond angle in the given molecule is
(e)
Interpretation:
The bond angle in the given molecule is to be stated. The answer is to be explained.
Concept introduction:
There are various theories which explain the geometry of the molecules. The geometry is decided on the basis of specific position of atom in the molecule. The bond lengths and bond angles between the bonded atoms play a major role in this. The bond angle is specific for a specific geometry of the molecule.
Answer to Problem 1.28AP
The bond angle in the given molecule is
Explanation of Solution
The given molecule is shown in figure 5.
Figure 5
In the given molecule, the oxygen atoms are bonded to each other. The geometry of the given molecule is V-shaped. This geometry of molecule is shown in figure 6.
Figure 6
The bond angle for V-shaped geometry in case of ozone is more than the usual bond angle. This is because of the repulsion between the lone pairs of electrons. Thus, the bond angle in the given molecule is
The bond angle in the given molecule is
(f)
Interpretation:
The bond angle in the given molecule is to be stated. The answer is to be explained.
Concept introduction:
There are various theories which explain the geometry of the molecules. The geometry is decided on the basis of specific position of atom in the molecule. The bond lengths and bond angles between the bonded atoms play a major role in this. The bond angle is specific for a specific geometry of the molecule.
Answer to Problem 1.28AP
The bond angle in the given molecule for
Explanation of Solution
The given molecule is shown in figure 7.
Figure 7
In the given molecule, the carbon atoms are bonded to each other in the linear fashion. Thus, it has only bond pair of electrons. Therefore, the geometry of the given molecule is linear. This geometry of molecule is shown in figure 8.
Figure 8
The bond angle for linear geometry is
The bond angle in the given molecule for
(g)
Interpretation:
The bond angle in the given molecule is to be stated. The answer is to be explained.
Concept introduction:
There are various theories which explain the geometry of the molecules. The geometry is decided on the basis of specific position of atom in the molecule. The bond lengths and bond angles between the bonded atoms play a major role in this. The bond angle is specific for a specific geometry of the molecule.
Answer to Problem 1.28AP
The bond angle in the given molecule is
Explanation of Solution
The given molecule is shown in figure 9.
Figure 9
In the given molecule, the nitrogen atom is bonded to two oxygen atoms and one carbon atom. Thus, it has three bond pairs of electrons and nitrogen carries a positive charge. Therefore, the geometry of the given molecule is planar. This geometry of molecule is shown in figure 10.
Figure 10
The bond angle for planar geometry is
The bond angle in the given molecule is
Want to see more full solutions like this?
Chapter 1 Solutions
EBK ORGANIC CHEMISTRY
- Give the name of this compound, including stereochemistry if relevant: CICH2 CH3 Br CH₂CH=CH2 Write in the product, including stereochemistry where relevant, for these reactions. See end of ch. 8, p. 301-303. 1. 03 a) 2-methyl-2-pentene -> 2. Zn, H* Br2 b) 1-ethylcyclopentene -->arrow_forwardNonearrow_forward3. You may want to read paragraph 1.5 in your textbook before answering this question. Give electron configuration (short-hand notation is fine) for: (5 points) 3+ a) Manganese atom and Mn³+ b) Se atom c) Cu atom and Cu+arrow_forward
- However, why are intermolecular forces in metallic and ionic compounds not discussed as extensively? Additionally, what specific types of intermolecular attractions exist in metals and ionic compoundsarrow_forwardWhat is the preparation of 1 Liter of 0.1M NH4Cl buffer at pH 9.0 with solid NH4Cl and 0.1M NaOH. How would I calculate the math to describe this preparation? How would I use Henderson-Hasselbach equation?arrow_forwardC Predict the major products of this organic reaction. Be sure you use wedge and dash bonds when necessary, for example to distinguish between major products with different stereochemistry. : ☐ + x G C RCO₂H Click and drag to start drawing a structure.arrow_forward
- Fill in the blanks by selecting the appropriate term from below: For a process that is non-spontaneous and that favors products at equilibrium, we know that a) ΔrG∘ΔrG∘ _________, b) ΔunivSΔunivS _________, c) ΔsysSΔsysS _________, and d) ΔrH∘ΔrH∘ _________.arrow_forwardHighest occupied molecular orbital Lowest unoccupied molecular orbital Label all nodes and regions of highest and lowest electron density for both orbitals.arrow_forwardRelative Intensity Part VI. consider the multi-step reaction below for compounds A, B, and C. These compounds were subjected to mass spectrometric analysis and the following spectra for A, B, and C was obtained. Draw the structure of B and C and match all three compounds to the correct spectra. Relative Intensity Relative Intensity 20 NaоH 0103 Br (B) H2504 → (c) (A) 100- MS-NU-0547 80 40 20 31 10 20 100- MS2016-05353CM 80 60 100 MS-NJ-09-3 80 60 40 20 45 J.L 80 S1 84 M+ absent राग 135 137 S2 62 164 166 11 S3 25 50 75 100 125 150 175 m/zarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY